
FPGA-Accelerated Password Cracking

Eric Britten
Department of Computer Science

California State University, Fullerton
Fullerton, USA

ebritten@csu.fullerton.edu

Mikhail Gofman
Department of Computer Science

California State University, Fullerton
Fullerton, USA

mgofman@fullerton.edu

Yu Bai
Department of Electrical and Computer Engineering

California State University, Fullerton
Fullerton, USA

ybai@fullerton.edu

Abstract—Passwords are a common way of securing systems
and applications from unauthorized access. However, passwords
can be vulnerable to attackers who try to crack them by using
random guesses, common patterns (e.g., password topologies),
dictionary words, or leaked passwords. In this paper, we propose
a hardware-accelerated password cracking method that leverages
field-programmable gate array (FPGA) technology to recover
passwords hashed with the sha512crypt algorithm. This algo-
rithm is widely used on Linux systems. Our approach focuses on
fast development to simulate a casual attacker who wants to boost
their password cracking performance by using the speed and
parallelism of FPGAs, which can outperform traditional CPUs
and GPUs.

Using C++ high-level language (a technique called high-level
synthesis), we created a hardware device (i.e., a core) that runs the
sha512crypt algorithm on the Zynq Z-7020 CPU-FPGA hybrid
chip. We then tested the password cracking speed of our core
(passwords/sec) and compared it to the AMD Ryzen 9 and Apple
M1 Max CPUs. Based on the results of one core and two parallel
sha512crypt cores on our chip, the maximum that could fit, we
estimated that an FPGA chip with more than 8 sha512crypt cores
and the same parameters as our chip could crack 10-character
passwords at 360 passwords/sec, which is faster than a single-
threaded sha512crypt on either CPU. We also projected that with
15 cores, we could achieve a speed of 675 passwords/sec, which
is twice as fast as either of the CPUs.

We think this work is a useful addition to the research on
cybersecurity applications of FPGAs, as few works have tried to
break sha512crypt on the FPGA. In the future, we will implement
our design on modern FPGA chips that can accommodate more
than 10 cores, optimize our designs and evaluation methodology,
and perform a more extensive evaluation.

Index Terms—Security, cybersecurity, FPGA, passwords, pass-
word cracking, field-programmable gate array

I. INTRODUCTION

Password-based authentication is a common method to

protect systems and applications from unauthorized access.

However, this method is vulnerable to attacks that can crack

passwords by using random guesses, common patterns (e.g.,

password topologies), dictionary words, or leaked passwords.

Defenders try to frustrate these attacks by enforcing password

complexity rules and frequency of change, and by storing

one-way hashes of passwords instead of plaintext passwords.

One-way password hashes make it difficult for the attacker

to find out the password even if they breached the system

password database. Some secure password hashing algorithms

are scrypt [1], bcrypt [2], and sha512crypt [3]. The attacker

cannot reverse the hash value to get the password and can only

guess the password that results in the same hash.
We present a scheme for cracking passwords stored with

the sha512crypt algorithm, which is widely used on Linux

systems, using field-programmable gate array (FPGA) tech-

nology. FPGAs are chips that can be programmed to create

custom on-chip hardware circuits. FPGAs have advantages

over traditional central processing units (CPUs) and graphical

processing units (GPUs), such as faster speeds, higher com-

putational throughput, and lower power consumption. These

advantages can be exploited by attackers to bruteforce pass-

words efficiently. However, they can also be used by defenders

to speed up the process of finding weak passwords, restoring

lost passwords, and testing security.
The contributions of this paper are as follows:

1) We present a prototype design of the FPGA-based

sha512crypt algorithm to bruteforce passwords stored in

the sha512crypt format. Although multiple works have

attempted similar FPGA-based attacks against pass-

words stored using other approaches, such as scrypt, our

work is among the few (see Section VII) to implement

sha512crypt on the FPGA.

2) We implement our design on the Zynq Z-7020 CPU-

FPGA hybrid unit and compare the cracking speeds

of two parallel FPGA-implemented sha512crypt devices

(cores) to the single-threaded sha512crypt on the AMD

Ryzen 9 and Apple M1 Max CPUs. Two cores is the

maximum we can fit on our FPGA due to resource

limitations and our rapid development driven design that

emphasizes reuse of existing components.

3) We then projected that an FPGA with more than 8 cores

can crack 10-character passwords faster than both CPUs,

based on the linear performance gains of two parallel

sha512crypt devices. We also estimated that 15 cores

can crack passwords twice as fast as either of the CPUs

2541

2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE)

979-8-3503-2759-5/23/$31.00 ©2023 IEEE
DOI 10.1109/CSCE60160.2023.00408

[4].

4) We believe that the simplicity of our design and rapid

development process illustrate that it is viable for casual

attackers with limited FPGA programming knowledge to

use FPGAs for cracking passwords.

The paper is structured in the following manner. Section II

discusses the preliminaries. Sections III, IV, and V present

design, implementation, and performance results, respectively.

Section VI discusses the implications of our results and

projects results for a larger number of sha512crypt cores,

and Section VII compares our work to the existing related

literature. Finally, our concluding remarks and plans for future

work appear in Section VIII.

II. PRELIMINARIES

In this section, we present the preliminaries of secure pass-

word storage, password cracking, and the FPGA technologies.

A. Secure Password Storage

Hashing and salting are standard approaches for securely

storing passwords. If the attacker gains access to the password

database, hashing and salting make password recovery a

computationally challenging task. Let (uid, salt,H(P ||salt))
represent an entry in the password database where uid is

the unique ID of the user, salt is a unique random value

associated with the user’s account during the account creation

time, and H(P ||salt) is the output of a one-way, collision-

resistant hash function H where P ||salt is a concatenation

of user’s password P and salt. Examples of real-world hash

functions include SHA-512 [5] and BLAKE3 [6].

The non-invertibility of H will prevent the attacker

from directly recovering P even if they gain access to

(uid, salt,H(P ||salt)). The randomness of the salt value also

helps to prevent the attacker from using precomputed tables

of hashed passwords, known as rainbow tables [7], to recover

P indirectly. The system can still verify the password by

appending the user’s salt to the entered password, hashing

the result, and comparing it to the hash in the database. The

password is valid only if the hashes match.

We targeted the sha512crypt database entry format that is

based on the SHA-512 hashing algorithm [8]. We also assumed

that each password had up to 64 characters in length and was

salted with 16-bytes.

B. Password Cracking

Assume the attacker has a copy of the system password

database comprising pairs (P , H(P)) (assuming no salting).

To recover the password P ′ that is equivalent to P , the

attacker can guess P ′ values until H(P ′) = H(P). P ′ values

can come from lists of weak, common, or leaked passwords,

be randomly generated, or be generated based on common

password patterns (password toplogies).

Attacker can also speed up the attack by using a rainbow

table. However, if a random m-bit salt value is added to the

password prior to hashing, the rainbow table grows 2m times

larger, which makes it harder or impossible to make a table.

Salting also makes the hashes different even when two users

have the same passwords.

The most computationally demanding aspect of the attack

is repeatedly computing H(P ′||salt) for many guesses of P ′

(assuming the attacker knows the salt). The metric used to

measure the speed of the attack is often password hashes

per second or simply passwords per second. Faster CPU

speeds, more CPU cores, and highly parallel GPUs help

attackers to crack passwords faster. FPGAs give attackers the

extra advantage of creating custom, on-chip hardware that

is parallel, fast, and power efficient compared to CPUs and

GPUS [9], and is specially optimized for hashing. However,

programming an FPGA is generally more challenging than

writing programs for CPUs and GPUs.

C. The sha512crypt Algorithm

The sha512crypt algorithm is based on the SHA-512 hash

function [3]. It is designed to be computationally resource

intensive to make password cracking harder. This algorithm

takes three inputs: the password, the salt, and the number of

hashing rounds. It uses the SHA-512 algorithm to hash these

inputs repeatedly for the given number of rounds, resulting

in a final hash. The number of rounds can vary, but 5000 is

a common choice. Increasing the number of rounds makes

the password verification slower for both the system and the

attacker, but it affects the attacker more who has to verify

many password guesses. The algorithm is described in more

detail at [3].

D. Field-Programmable Gate Arrays (FPGA)

An FPGA is an integrated circuit whose internal structure

and function can be programmatically altered after the circuit

is manufactured. For example, FPGA programmers can create

custom, on-chip hardware, including mathematical function

units, memory, and other complex hardware-based functions

including hashing algorithms [10].

FPGA consists of an array of programming logic blocks that

can do basic computations such as arithmetic, logic, and stor-

age; and a hierarchy of reconfigurable interconnects that can

connect the programming logic blocks. FPGA programming is

usually done using a low-level hardware description language

(HDL). However, many modern FPGAs can be programmed

using high-level languages such as C, C++, and Python, which

are then converted into HDL by the software development kit

for the FPGA. This is called high level synthesis (HLS). We

use high level synthesis with C++ for our implementation.

The flexibility of FPGAs can allow an attacker to create

many parallel, optimized hash function units on a chip and

use them to crack passwords efficiently. We used the Zedboard

with a Zynq Z-7020 CPU-FPGA hybrid chip (Figure 1) and the

Vitis Unified Software Platform 2022.2 [11] for development.

The platform includes Vitis HLS, Vivado, and Vitis IDE which

we discuss in Section IV. The CPU in the chip was a 667

MHz dual core ARM Cortex-A9 processor. The FPGA was

an Artix-7 with 53,200 look-up tables (LUTs) [12].

2542

Fig. 1. Zedboard with Zynq Z-7020 [13]

III. DESIGN

By integrating an ARM-based CPU and an Artix FPGA on a

single die, the Zynq Z-7020 chip enables faster communication

between the two units than separate chips. We leverage this

feature to design a password-guessing system that runs on

both the CPU and the FPGA. The CPU generates candidate

passwords and sends them to the FPGA, which performs the

sha512crypt algorithm to compute the hash. The CPU then

checks if the hash matches the target. We implement the

guessing logic on the CPU to facilitate rapid development,

as it is easier to program than the FPGA, but with some

performance trade-off.

Our overall design is shown in Figure 2. The design has

two main components:

1) As shown at the top of Figure 2, the host application
running on the CPU generates and sends the guessed

password and salts to the FPGA hardware, which hashes

them. The host application then compares the hash with

the target hash to determine if the password is cracked.

The password-guessing algorithm generates candidate

passwords based on the user-supplied password topol-

ogy. A password topology is the pattern of the password.

For example ulllllldd represents a topology of a 9-

character password where uis an upper-case letter, l a

lower-case letter, and d a digit. Attackers can guess pass-

words faster by using the most common topologies [14].

2) The second part is the sha512crypt algorithm im-

plemented as a hardware device (i.e., a core), on the

FPGA (sha512crypt in the figure). The core executes the

sha512crypt algorithm and produces a hash. Multiple

parallel cores can be implemented on a single FPGA

chip if the FPGA has sufficient resources. We were able

to physically fit two sha512crypt cores on the FPGA.

The CPU-based host application calls the top-level kernel

function on the FPGA. This function is the interface that trans-

fers data between the host program and the FPGA. The top-

Fig. 2. Architecture with Dual Core Sha512Crypt

level kernel function (kernel sha512crypt dual in Figure 2)

copies the passwords and salt values to data buffers for each

FPGA sha512crypt core and triggers them to run in parallel

and return the password hash values. When both modules

finish, the top-level function returns the hash values to the

host program.

Our design can also handle larger FPGAs that can fit more

than two cores. In such cases, we can modify the top-level

function to distribute n passwords among the n sha512crypt

cores on the FPGA. The top-level function then collects the

password hash values from all the sha512crypt cores and sends

them back to the host application for comparison.

IV. IMPLEMENTATION

We realized our design using the Vitis Unified Software

Platform 2022.2 for the Zedboard development board with the

Zynq Z-7020.

First, we used Xilinx Vitis HLS software to develop the

FPGA sha512crypt module using HLS with C++. Next, we

used Xilinx Vivado software to configure the internal structure

of the FPGA on the Zedboard. The resulting design is shown

in Figure 3. The FPGA design includes our sha512crypt

module and components that handle communication between

the FPGA and the main memory. Those components include

the Zynq processing system which connects to the board’s

main memory and two AXI interconnects and a processor

system reset module that are used to give the sha512crypt

module access to that memory. Vivado software was then used

to generate the bitstream file of our FPGA design that was used

to program the FPGA. Lastly, we then used the Xilinx Vitis

IDE software to develop the host program in C++ and then

run the program on the board CPU.

2543

We ran the host program of the password cracker in stan-

dalone mode. This means that it was the only program running

on the Zedboard CPU, without the embedded Linux operating

system supported by the board. This way, we avoided OS

overhead and simplified the development process.

We based our FPGA implementation of the sha512crypt

algorithm in the glibc C library [15], with some modifications.

We limited the password length to 64 characters and the salt

value to 16 bytes, while glibc could handle larger inputs. To

reduce the development time, we used the SHA-512 subroutine

from the Vitis HLS library [16] and called it for multiple

rounds as required by sha512crypt. To accommodate our

password and salt size restrictions, we increased the buffer

size of the SHA-512 subroutine from 256 bytes to 4336 bytes,

which is the maximum amount of data that sha512crypt needs

to hash. However, this caused timing violations on the Zynq

Z-7020 FPGA, so we reduced the clock rate from 100MHz

to 70MHz. We plan to optimize our implementation further to

achieve a higher clock speed in the future.

Only two sha512crypt cores fit on the FPGA, and this

limitation was imposed by the number of available LUTs as

seen in Table I. LUTs are the basic computation units of the

FPGA, and LUTRAM is a special type of LUT in Xilinx

FPGAs that can handle complex computations. Flipflops (FFs)

are used for the storage of data produced by logical operations.

Block RAM is placed on chip memory that is used to transfer

data between different modules using a first in, first out

(FIFO) manner. The columns ”Single Core” and ”Dual Core”

show the resources used by the single and dual core FPGA

implementations, respectively. The column ”Available” shows

the number of resources available on the Zedboard.

Single Core Dual Core Available
LUTs 18,624 35,679 53,200
LUTRAM 4,170 8,123 17,400
FF 22,456 41,811 106,400
BRAM 3 5 140

TABLE I
ZEDBOARD UTILIZATION

We used a shared DDR memory space that was accessible

to both the CPU host program and the FPGA sha512crypt

core to communicate. The host program writes passwords and

salt values to this memory area, and then the FPGA reads

them and writes out the password hash values to the same

memory area. We used two AXI Interconnects [17], which

are modules that enable memory mapped data transfers, to

facilitate communication between the host program and the

sha512crypt module.

For comparison purposes, the sha512crypt function from

the standard Linux glibc library was used when the running

the password cracker on the desktop CPUs. Machine code

generated for the CPUs ran in single thread on a single core.

Two machines were used for CPU testing. First, a Linux

system with Ubuntu 22.04.2 and a 3.7 GHz AMD Ryzen 9

5900X processor with 128 GB of RAM. Second, a MacBook

Pro with Mac OS 12.5 and a 3.2 GHz Apple M1 Max

processor with 64 GB of RAM.

V. PERFORMANCE RESULTS

We compared the passwords/sec speed of our approach

when using an FPGA with a single sha512crypt core and

two sha512crypt cores against sha512crypt running on the

system with AMD Ryzen 9 5900X processor [18] and against

sha512crypt running on a system with the Apple M1 Max [19]

processor. The algorithm running on the CPUs was single-

threaded.

In each experiment, 100 passwords of a specified length

and topology were randomly generated. Each of the passwords

was then respectively hashed along with the 16-byte salt value

using sha512crypt. The experiment for each password length

was repeated 10 times, after which the hashing speeds were

averaged. The experiment was conducted for password lengths

between 1 - 64 characters. The average speeds of the FPGA

with one sha512crypt core and two sha512crypt cores and the

speeds of the two CPUs were then plotted against password

size in Figure 4.

As can be observed from the plot, dual core FPGA imple-

mentation of the sha512crypt algorithm was twice as fast as

the single core implementation. n cores are therefore expected

to result in speed of ns where s is the speed of the single core.

The next section examines this assumption in detail and uses

these results to estimate performance for implementations with

more than two sha512crypt cores.

Also, we see that the speed drops for all implementations as

the password size grows. The biggest drop happens between

15 and 16 characters. This is because of the sha512crypt

algorithm’s behavior and how it deals with data of different

lengths.

Since the Zedboard FPGA has less space and is older

than the CPUs, the CPUs were expected to outperform the

FPGA. The AMD Ryzen 9 5900X was 3.18 times faster,

while Apple M1 Max was 3.7 times faster than the dual core

FPGA implementation. The next section shows how many

sha512crypt FPGA units are needed to beat both Ryzen 9 and

Apple M1 Max.

VI. DISCUSSION

We used the results from the previous section to project the

performance of our approach on the FPGAs with the same

specification as Zynq Z-7020 but more room for additional

sha512crypt units design similar to ours.

We could only fit two sha512crypt cores on the Zynq Z-

7020 chip due to limited LUTs. Larger FPGAs can fit more

cores and achieve a linear increase in hashing throughput.

Specifically, as observed from results in the previous section,

n cores will yield performance of ns where s is the speed

of a single core. We also assume that there is no significant

diminishing return for up to 20 cores. Based on the FPGA

platform characteristics and our design, we believe these

assumptions to be reasonable.

The linear relationship does not hold for traditional CPUs,

which face several performance challenges. They have to

communicate between cores, which takes time. In traditional

systems, the CPU runs an operating system and multiple

2544

Fig. 3. Vivado Board Configuration

Fig. 4. Password Hashing Speed

processes and threads, which lowers the performance of a

single process such as the password cracker. Moreover, CPUs

are limited by the number of cores that the manufacturers

offer, while FPGAs can scale up the number of cores as

the attacker needs, as long as the core design efficiency and

the FPGA resources allow it. We plan to implement parallel

multithreaded CPU versions of the sha512crypt and compare

their performance to our FPGA-based approach in the future.

Using our assumptions, we estimated the number of cores

needed to outperform the AMD Ryzen 9 and Apple M1 Max

CPUs in single-threaded sha512crypt performance for 10-

character and 60-character passwords. These lengths represent

a common minimum password length and a long password

(e.g., for an administrative account), respectively.

A. Projections for 10-Character and 60-Character Passwords

For a 10-character password, our single-core implemen-

tation achieved a speed of 45 passwords/sec, 2-core FPGA

implementation achieved a speed of 90 passwords/sec, while

the AMD Ryzen 9 and the Apple M1 Max achieved speeds

of 286 and 334 passwords/sec, respectively.

Considering the above results, we projected the potential

password cracking speeds for larger core counts. Assuming

a linear relationship between the number of cores (n) and

the cracking speed (s), we can infer the following: If s = 45

passwords/sec for n = 1, then for n = 7, the projected speed

would be 315 passwords/sec, surpassing the performance of

the AMD Ryzen 9. Furthermore, with n = 8, the projected

2545

speed is 360 passwords/sec, outperforming the Apple M1 Max.

Moreover, when n = 15, we estimated a cracking speed of 675

passwords/sec, which is more than twice as fast as either of

the CPUs.

For a 60-character password, our single-core implementa-

tion achieved a speed of 27 passwords/sec and our 2-core

FPGA implementation achieved 55 passwords/sec. Therefore,

outperforming AMD Ryzen 9, which achieved a speed of 152

passwords/sec, will require 6 cores. Similarly, to match the

performance of the Apple M1 Max, which reached a speed of

189 passwords/sec, will require 7 cores.

As we discuss in Section VIII, our next research step is to

implement our approach on larger FPGA chips such as the

Kintex Ultrascale+ XCKU5P [20], which we believe can ac-

commodate up to 10 sha512crypt cores and empirically prove

our projections. We also believe that by further optimizing our

implementation, we can reduce the physical footprint for each

sha512crypt unit, and thus be able to accommodate even more

units per chip.

VII. RELATED WORKS

Table II shows previous studies on FPGA-based password

cracking. The ”Algorithm” column gives the password storage

scheme and the ”Language” column gives the FPGA language.

The table shows that studies [2], [21]–[24] do not give the

language. So, it is unclear whether the FPGA was programmed

with HDL or HLS.

Works [25] and [26] used high level synthesis. In [27] the

authors briefly mentioned sha512crypt, while mostly focusing

on sha256crypt. This work used the Zynq Z-7030 FPGA

and it could accommodate two cores of sha256crypt or one

sha512cryptc core. Our work was able to accommodate two

sha512crypt cores on the same board, although their core

achieved a speed of 220 MHz while our core ran at the speed

of 70 MHz. Their system was about 711 times faster compared

to ours. We attribute this to a higher clock frequency that was

3.1x faster than ours and other factors from the more powerful

hardware and more complex design choices.

Specifically, Zynq Z-7030 (XC7Z030) has about 50% more

logic cells than the Z-7020 that we use. The design in [27]

also employs a custom designed sophisticated finite state

machine, while our approach emphasized rapid development

and reuse of existing components. Additionally their system

was developed using Xilinx Vivado 2016.3, while ours was

with Vivado 2022.3.

John the Ripper [28] is another software that can use the

FPGA for password cracking and is programmed with VHSIC

Hardware Description Language (VHDL; a form of HDL)

while we used the HLS approach. It’s design [28] differs

from ours and the previously described works significantly.

It’s design uses SHA-512 hashing cores along with a soft core

processor that executes a sha512crypt program on the FPGA.

The ZTEC 1.15y [29] board that it uses contains four FPGA

chips, each of which contains 12 units. Each unit contains

4 SHA-512 cores allowing 192 passwords to be processed

at the same time. It should be noted that the FPGA model

(XC6SLX150) on the ZTEC 1.15y has significantly more logic

cells than our FPGA, and it therefore expected that ZTEC

1.15y can support more cores. The XC6SLX150 [30] contains

147,443 logic cells, where as the Zedboard’s Zync Z-7020 only

has 85,000.

VIII. CONCLUSIONS AND FUTURE WORKS

We designed and implemented a prototype FPGA-based

sha512crypt bruteforce password cracking scheme using C++

on the Zedboard with a Zynq Z-7020 CPU/FPGA, and we

compared its performance to the single-threaded implementa-

tion of sha512crypt AMD Ryzen 9 and Apple M1 Max modern

CPUs. Due to the physical limitations of our FPGA size and

rapid development driven design, we could accommodate two

sha512crypt computing cores. However, additional units could

be easily added on a larger chip, and we would expect the

hashing performance to increase linearly. The same is not

expected on the CPUs where the performance can often be

bottlenecked by the operating system.
Projections based on our performance results indicate that

an FPGA chip capable of accommodating more than 8 cores

(with all other variables held constant) would outperform

the single-threaded algorithm running on the AMD Ryzen 9

and the Apple M1 Max for cracking 10-character passwords.

Fifteen cores would make our approach more than twice as

fast as both CPUs.
Our work is among the first to provide performance results

for a high level synthesis approach of a sha512crypt imple-

mentation on the FPGA and is among the few to accommodate

more than one sha512core on the FPGA. Furthermore, this is

the first work to explicitly experiment the rapid development

approach to FPGA-based password cracking.
We find the preliminary results encouraging. Our next steps

are as follows:

1) Further optimize the layout and time efficiency of our

FPGA-based sha512crypt implementation.

2) Move the password guessing logic to the FPGA to

completely eliminate the CPU-imposed bottlenecks.

3) Experiment with other schemes, such as scrypt and

bcrypt, and evaluate our approach against them.

4) Implement our approach on the Kintex Ultrascale+

KCU116 development board and empirically validate

the projections made in this paper. We estimate that the

XCKU5P FPGA on the board can accommodate around

12 units or more.

5) Compare the performance of our approach to the mul-

tithreaded implementation of sha512crypt algorithm on

the modern CPU.

6) Compare our approach to the performance of the GPU-

based password cracking schemes.

7) Utilize more LUTRAM and less LUTs to optimize our

approach and fit more password hashing cores on the

FPGA.

REFERENCES

[1] C. Percival, “Stronger key derivation via sequential memory-hard func-
tions,” 2009.

2546

Year Algorithm Language Description
[23] 2005 25DES N/A The Xilinx XC4VLX200 FPGA was used to hash passwords.
[31] 2010 LM Hash, md5, sha1 VDHL Builds rainbow tables using a Xilinx XCV5VLX330T FPGA.
[24] 2014 bcrypt N/A Password generation and hashing on the Zedboard with the Z-7020 FGPA.
[2] 2014 bcrypt N/A Several different FPGAs including the Zedboard with the Z-7020 FGPA are used to hash

passwords in parallel.
[22] 2015 bcrypt N/A Compares password hashing speeds of bcrypt on CPU’s, GPU’s and the Zedboard with

the Z-7020 FGPA.
[21] 2016 PBKDF2, SHA1 N/A Password generator and hasher are implemented on Xilinx Spartan-6 and Artix-7 FPGAs.
[26] 2017 SHA-3 C Hashing algorithm was implemented on a Zedboard with the Z-7020 FGPA.

[28], [32] 2018 bcrypt, descrypt, scrypt,
sha256crypt, sha512crypt

VHDL Password cracker that generates and hashes passwords on a ZTEC 1.15y FPGA board
with four XC6SLX150 FPGAs.

[25] 2018 md5 C++ An OpenCL approach with an Intel Arria 10 GX1150 FPGA is compared to CPUs and
a GPU.

[33] 2019 md5 VHDL Brute force password cracker with password guesser and MD5 hasher implemented on
a Xilinx Virtex-7 FPGA.

[27] 2020 Sha256crypt, Sha512crypt N/A Password recovery with a CPU/FPGA hybrid approach was used with a Zynq Z-7030.
[34] 2021 SHA1, SHA-256, SHA-512,

MD5
N/A Password recovery comparison between FPGAs, a GPU and a CPU. FPGA’s were the

Xilinx Kintex XCKU060, Xilinx U280, Huawai FX600 and the Intel Cyclone IV.

TABLE II
COMPARISON OF RELATED WORKS

[2] K. Malvoni, S. Designer, and J. Knezovic, “Are your passwords safe:
Energy-efficient bcrypt cracking with low-cost parallel hardware.,” in
WOOT, 2014.

[3] “Unix crypt using sha-256 and sha-512.” https://www.akkadia.org/
drepper/SHA-crypt.txt, 2016-8-31. Accessed on June 7, 2023.

[4] “Ultrascale+ fpgas product tables and product se-
lection guide.” https://docs.xilinx.com/v/u/en-US/
ultrascale-plus-fpga-product-selection-guide, 2023. Accessed on
June 16, 2023.

[5] National Institute of Standards and Technology (NIST), “Secure Hash
Standard (SHS).” Federal Information Processing Standards Publication,
2015. FIPS PUB 180-4.

[6] “Blake3.” https://github.com/BLAKE3-team/BLAKE3/. Accessed:
2013-06-08.

[7] P. Oechslin, “Making a faster cryptanalytic time-memory trade-off,”
in Advances in Cryptology-CRYPTO 2003: 23rd Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21,
2003. Proceedings 23, pp. 617–630, Springer, 2003.

[8] M. Kerrisk, “crypt(3) - linux manual page.” https://man7.org/linux/
man-pages/man3/crypt.3.html. Accessed: 2021-12-17.

[9] Z. Zhang, P. Liu, W. Wang, S. Li, P. Wang, and Y. Jiang, “High-
performance password recovery hardware going from gpu to hybrid cpu-
fpga platform,” IEEE Consumer Electronics Magazine, vol. 11, no. 1,
pp. 80–87, 2022.

[10] I. Kuon, R. Tessier, J. Rose, et al., “Fpga architecture: Survey and
challenges,” Foundations and Trends® in Electronic Design Automation,
vol. 2, no. 2, pp. 135–253, 2008.

[11] “Vitis unified software platform.” https://www.xilinx.com/products/
design-tools/vitis/vitis-platform.html, 2023. Accessed on June 7, 2023.

[12] “Zynq-7000 soc data sheet: Overview (ds190).” https://docs.xilinx.com/
v/u/en-US/ds190-Zynq-7000-Overview, 2018. Accessed on June 4,
2023.

[13] https://www.xilinx.com/products/boards-and-kits/1-8dyf-11.html. Ac-
cessed: 2023-06-30.

[14] H. Leininger, “Pathwell: Password topology histogram wear-leveling,”
in BSides Asheville, 2014.

[15] “The gnu c library (glibc).” https://www.gnu.org/software/libc/, 2023.
Accessed on June 3, 2023.

[16] “sha512: Vitis hls library.” https://docs.xilinx.com/r/en-US/Vitis
Libraries/security/guide L1/hw api.html 98, 2023. Accessed on June
3, 2023.

[17] “Axi interconnect.” https://www.xilinx.com/products/
intellectual-property/axi interconnect.html, 2023. Accessed on
June 16, 2023.

[18] “Amd ryzen 9 5900x desktop processors.” https://www.amd.com/en/
products/cpu/amd-ryzen-9-5900x, 2020. Accessed on June 3, 2023.

[19] “Macbook pro (16-inch, 2021) - technical specifications.” https://support.
apple.com/kb/SP858?locale=en US, 2021. Accessed on June 7, 2023.

[20] “Kintex ultrascale+ product table.” https://www.xilinx.com/products/
silicon-devices/fpga/kintex-ultrascale-plus.html, 2023. Accessed on
June 7, 2023.

[21] M. Kammerstetter, M. Muellner, D. Burian, C. Kudera, and W. Kastner,
“Efficient high-speed wpa2 brute force attacks using scalable low-cost
fpga clustering,” in Cryptographic Hardware and Embedded Systems–
CHES 2016: 18th International Conference, Santa Barbara, CA, USA,
August 17-19, 2016, Proceedings 18, pp. 559–577, Springer, 2016.

[22] M. Dürmuth and T. Kranz, “On password guessing with gpus and fpgas,”
in Technology and Practice of Passwords: International Conference
on Passwords, PASSWORDS’14, Trondheim, Norway, December 8-10,
2014, Revised Selected Papers 7, pp. 19–38, Springer, 2015.

[23] N. Mentens, L. Batina, B. Preneel, and I. Verbauwhede, “Cracking unix
passwords using fpga platforms,” 2005.

[24] F. Wiemer and R. Zimmermann, “High-speed implementation of bcrypt
password search using special-purpose hardware,” in 2014 International
Conference on ReConFigurable Computing and FPGAs (ReConFig14),
pp. 1–6, IEEE, 2014.

[25] Z. Jin and H. Finkel, “Evaluation of md5hash kernel on opencl fpga plat-
form,” in 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pp. 1026–1032, IEEE, 2018.

[26] H. S. Jacinto, L. Daoud, and N. Rafla, “High level synthesis using vivado
hls for optimizations of sha-3,” in 2017 IEEE 60th International Midwest
Symposium on Circuits and Systems (MWSCAS), pp. 563–566, IEEE,
2017.

[27] Z. Zhang and P. Liu, “A hybrid-cpu-fpga-based solution to the recovery
of sha256crypt-hashed passwords,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 1–23, 2020.

[28] “John the ripper password cracker.” https://www.openwall.com/john/,
2023. Accessed on June 7, 2023.

[29] “Usb-fpga module 1.15y.” https://www.ztex.de/usb-fpga-1/usb-fpga-1.
15y.e.html, 2023. Accessed on June 24, 2023.

[30] “Spartan-6 family overview.” https://docs.xilinx.com/v/u/en-US/ds160,
2011. Accessed on June 24, 2023.

[31] K. Theocharoulis, I. Papaefstathiou, and C. Manifavas, “Implementing
rainbow tables in high-end fpgas for super-fast password cracking,”
in 2010 International Conference on Field Programmable Logic and
Applications, pp. 145–150, IEEE, 2010.

[32] “John the ripper - fpga-sha512crypt.” https://github.com/openwall/john/
tree/bleeding-jumbo/src/ztex/fpga-sha512crypt, 2018. Accessed: 2023-
06-17.

[33] M. Gillela, V. Prenosil, and V. R. Ginjala, “Parallelization of brute-force
attack on md5 hash algorithm on fpga,” in 2019 32nd International
Conference on VLSI Design and 2019 18th International Conference on
Embedded Systems (VLSID), pp. 88–93, IEEE, 2019.

[34] B. Li, F. Feng, X. Chen, and Y. Cao, “Reconfigurable and high-efficiency
password recovery algorithms based on hrca,” IEEE Access, vol. 9,
pp. 18085–18111, 2021.

2547

