
How to attack a galaxy: from Star Wars to Star Trek

Luis Hernández-Álvarez∗
Institute for Physical and Information Technologies (ITEFI)

Spanish National Research Council (CSIC)
Madrid, Spain

luis.hernandez@csic.es

0000-0003-2637-8901

Miguel Ángel González de la Torre
Institute for Physical and Information Technologies (ITEFI)

Spanish National Research Council (CSIC)
Madrid, Spain

ma.gonzalez@csic.es

0000-0001-8398-1884

Eva Iglesias Hernández
Institute for Physical and Information Technologies (ITEFI)

Spanish National Research Council (CSIC)
Madrid, Spain

eva.iglesias@csic.es

0009-0005-2824-7405

Luis Hernández Encinas
Institute for Physical and Information Technologies (ITEFI)

Spanish National Research Council (CSIC)
Madrid, Spain

luis.h.encinas@csic.es

0000-0001-6980-2683

Abstract—Recently, the National Institute of Standards and
Technology set CRYSTALS–Kyber as post-quantum public
key encryption/key encapsulation mechanism standard, and
CRYSTALS–Dilithium as post–quantum digital signature stan-
dard. These post quantum cryptosystems are also recommended
for national security systems. As a result, it is important to
identify and analyze the weaknesses and potential information
leakage points, so that they can be resolved. In this work,
we study the newest side channel attacks based on artificial
intelligence models against Kyber and Dilithium, focusing on
the specific function attacked. We also examine the artificial
intelligence algorithms employed in these attacks and their
configurations, discussing which parameters and setting are
suitable, and identifying different tools that might be useful.

Index Terms—Aritificial Intelligence, Kyber, Dilithium, Multi
Layer Perceptron, Post Quantum Cryptography

I. INTRODUCTION

Nowadays, public–key cryptosystems are based on difficult

or intractable mathematical problems that can not be solve

in polynomial time by conventional computers. However, if

it was possible to employ large–scale quantum computers,

it would be feasible to solve these mathematical problems

in polynomial time with Shor’s algorithm [1]. Certainly, it

is thought that the development of quantum computers is

currently limited by engineering challenges, and they will

become a reality in the near future. In that case, the integrity

and confidentiality of current digital communications would

be compromised and no longer secure. Motivated by this risk,

Post–Quantum Cryptography (PQC) has emerged as one of

the most promising and important scientific areas. The goal

of PQC is to elaborate new cryptographic systems that are

resistant to both classical and quantum computers, while being

suitable to existing communications protocols.

In 2016, the National Institute of Standards and Technology

(NIST) initiated a process to establish quantum–resistant (i.e.

post-quantum cryptography, PQC) public–key cryptographic

algorithms. This call has two cathegories, Public Key En-

cryption (PKE)/Key Encapsulation Mechanism (KEM) and

digital signatures. The objective was to evaluate the initiatives

and to select as PQC standard at least two algorithms, based

on different mathematical primitives. The NIST PQC call is

currently in its fourth round and, in July 2022, CRYSTALS–

Kyber [2] was standardized in the PKE/KEM cathegory, while

CRYSTALS–Dilithium [3] was standardized for digital signa-

tures [4] (Kyber and Dilithium are fictitious minerals from the

Star Wars and Stark Trek universes).

In parallel to the development of PQC algorithms, the area

of Artificial Intelligence (AI) has gained a lot of interest in

the scientific community. AI can be defined as the science and

engineering of making intelligent machines [5], and its algo-

rithms can be categorized into two subareas: Machine Learning

(ML) and Deep Learning (DL). Recently, new applications

of AI have been explored, including, among others, Natural

Language Processing (NLP), medical procedures, biometric

user authentication and cybersecurity [6]. In the field of PQC,

AI has been studied to create and explode weaknesses in the

proposed algorithms, usually enabling Side Channel Attacks

(SCAs). In this sense, Neural Networks (NNs) have been

shown to be a particular useful AI model against PQC systems.

The objective of this work is to collect and study recent

AI–based SCAs on the PQC standards CRYSTALS–Kyber and

CRYSTALS–Dilithium. In this way, we provide an analysis of

current AI–based SCA against PQC algorithms, studying their

limitations and the vulnerability exploited. Having this goal in

mind, we include a description of the CRYSTALS–Kyber and

CRYSTALS–Dilithium algorithms, emphasizing the specific

functions and processes that may by attacked by SCAs.

The rest of the paper is organized as follows: Section II con-

tains a brief explanation of SCAs and NNs. In Section III and

Section IV we present the algorithms, targets and attacks of

CRYSTALS–Kyber and CRYSTALS–Dilithium, respectively.

Section V includes an analysis of the AI tools employed in

current SCAs, and the conclusions are presented in Section VI.

2347

2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE)

979-8-3503-2759-5/23/$31.00 ©2023 IEEE
DOI 10.1109/CSCE60160.2023.00381

II. BACKGROUND

A. Side Channel Attacks

SCAs were introduced by Kocher [7] and refer to a proce-

dure in which sensitive data related to a cryptosystem can be

obtained by measuring physical specificities of cryptographic

devices [8]. This means that, instead of exploiting the weak-

nesses of the algorithm implemented or potential errors in

the software, SCAs benefit from information leakages in the

physical implementation of a computing system. An example

is the power consumption attack [7], in which it is assumed

that power consumption is associated with an intermediate

value of the cryptographic algorithm operation. Usually, in

this type of attack the Hamming Weight (HW), that is, the

number of binary symbols different from zero, is employed.

Other measurements used in attacks are, for example, acoustic

events [9], or electromagnetic radiation [10].

Depending on the objective of the SCA, it can be catego-

rized as Key Recovery or Message Recovery [11]. The goal

of the former is to extract the long term secret key directly

(targeting operations such as polynomial multiplication) or

indirectly (with side-channel data from the decrypted message

for chosen–ciphertexts). On the contrary, the latter focuses on

the message encoding operation to retrieve the message.

B. Neural Networks

AI algorithms aim to mimic the way humans learn. Both

ML and DL are subareas of AI and, actually, DL is a part

of ML [12]. However, they are differentiated due to the

specific algorithms employed in DL: Neural Networks. NNs

(or Artificial NNs) are inspired by the human brain and how

the neurons work and signal to one another. As a result,

NNs are composed of nodes (neurons) organized in different

layers: an input layer, where the data from which we want

to learn is introduced; a variable number of hidden layers, in

charge of executing the learning process; and a output layer,

which produces the result [13]. Each neuron of each layer

is connected with all neurons of the next layer, and each

connection is defined by a weight and a threshold. If the

output of a node is greater than the threshold, its connection

is activated and it sends information to the next layer.

In order to learn, NNs need training data from which

features and patterns are automatically extracted. This learning

procedure allows the NN to optimize its parameters, so that

they are able to generalize the results and produce and accurate

output on new, previously unseen data, called testing set [12].

There exist techniques that help the model to generalize (i.e.

cross–validation, dropout, batch normalization techniques) and

to avoid being excessively adjusted to the training data, which

is called overfitting [14]. Equally significant is taking into

account the type of problem to be solve; it can be 1) a binary

problem, in which the range of the final outcome is formed

by two mutually exclusive results; 2) a multi–class problem,

where several mutually exclusive values are possible results,

and 3) a multi–label problem, meaning that the potential

results are not mutually exclusive. Multi Later Perceptrons

(MLPs) are a type of NN commonly used to develop profiling

attacks, that is, to simulate the activity of the attacked device

and extract sensitive information [15].

III. CRISTALS-KYBER

Kyber is a lattice-based post-quantum key encapsulation

mechanism (KEM) selected by NIST as PQC standard in the

public key encryption category (PKE/KEM) in 2022.

The security of Kyber is based in a variant of the Learn-
ing With Errors (LWE) problem, called Ring Learning With
Errors (R-LWE). We denote as R = Z[x]/(xn + 1) and

Rq = Zq[x]/(x
n + 1). Rq defines the lattice Rk

q used in

Kyber, where k takes values 2, 3 or 4 depending on the three

parameters sets presented in the Kyber submission. The other

parameters involved are q = 3329 and n = 256.

A. Algorithm

Kyber submission consists in two public key cryptosystems

Kyber.PKE and Kyber.KEM. Kyber.PKE is defined as the

three algorithms key generation, encrypt and decrypt (see Ta-

bles I, II), then these algorithms are used to define Kyber.KEM

as key generation, encapsulation and decapsulation (see Table

III). The transformation used is called FO�⊥ transformation.

Most of the attacks target the functions used in Kyber.PKE,

but the attacks are against Kyber.KEM security.

Kyber.PKE uses several functions, see [16], here are pre-

sented the following functions: GenMatrix, Encode (E), De-

code (D), Compress (Co) and Decompress (Dc). Also the

hash and other auxiliar functions used in both Kyber.PKE and

Kyber.KEM are denoted as H , G and KDF .

TABLE I
KYBER.PKE.KEYGEN (G) AND KYBER.PKE.ENCRYPT (E)

Kyber.PKE.KeyGen(), G() Kyber.PKE.Encrypt(pk,m, r), E(pk,m, r)

Sample ρ‖σ t̂ := D12(B)
GenMatrix(ρ) = A ρ ← pk
Sample noise σ → s, e GenMatrix(ρ) = A
ŝ := NTT (s) Sample noise r → s′, e1, e2
ê := NTT (e) ŝ′ := NTT (s′)
t̂ := A ◦ ŝ+ ê u := NTT−1(AT ◦ r̂) + e1
B = (E12(t̂ mod+q)‖ρ) v := NTT−1(tT ◦ r) + e2+Dcq(D1(m), 1)
sk :=E12(ŝ mod+q) c1 :=Edu (Coq(u, du))
return (pk := (seedA, B), sk) c2 :=Edv (Coq(v, dv))

return c = (c1‖c2)

TABLE II
KYBER.PKE.DECRYPT (D)

Kyber.PKE.Dec(sk, c), D(sk, c)
u := Dcq (Ddu (c), du)
v := Dcq (Ddv (c+ du · k · n/8), dv)
ŝ := D12(sk)
m :=E1(Coq(v −NTT−1(ŝT ◦NTT (u)), 1))
return m

The following scheme shows how Kyber.KEM works, the

algorithms Kyber.PKE.KeyGen, Kyber.PKE.Encrypt and Ky-

ber.PKE.Decrypt are denoted as G, E and D respectively.

Is important to highlight the re-encryption algorithm in

the decapsulation (Table III) of Kyber.KEM as a common

target of SCA. The re-encryption consists in the process of

2348

TABLE III
KYBER.KEM ALGORITHMS

Kyber.KEM.KeyGen() Kyber.KEM.Encaps(pk) Kyber.PKE.Decaps(sk, c)
z ← B32 m′ ← B32 h := sk + 24 · k · n/8 + 32
(pk, sk′) ← G m ← H(m′) z := sk + 24 · k · n/8 + 64
sk := (sk′‖pk‖H(pk)‖z) (K̄, r) ← (m‖H(pk)) m̃ ← D(sk, c)
return: (pk, sk) c ← E(pk,m, r) (K̄′, r′) ← G(m̃‖h)

K ← KDF (K̄‖H(c)) c′ ← E(pk, m̃, r′)
return (c, K) if c = c′, return K = KDF (K̄′‖H(c))

else return K = KDF (z‖H(c))

encypting again a decrypted message and checking if the

ciphertext obtained is the same as the one received as input.

Inside the re-encryption part of the algorithm the functions that

are the primary target are the Encode and Decode functions.

In this work we analyze three SCA (see Table IV) against

Kyber.KEM, that use a side channel leakage to train an AI

model. The attacks in [17] and [18], target both the re-

encryption part of the decapsulation algorithm. In the case

of [19] the target is the encapsulation, although still attacks

the Encode function used in Kyber.PKE.Encrypt (see Table I).

B. Determiner Leakage Attack

In Kyber.PKE.Encrypt of Table I the encode function is

applied to the message m. This function encodes each bit of

a message m, mi, into a coefficient of a polynomial x ∈ Rq ,

xi. The operation performed by the encode function is the

bitwise–and operation: xi = mi &
q+1
2 . This enconde function

is the target of the attack presented in [17], since the masking

used in this function meets the definition of a determiner.

In [19] a determiner is defined as “an intermediate value

that is defined according to a sensitive bit value, and the

difference between the Hamming weights of the elements of

the determiner domain is greater than or equal to 2. The

cardinal number of the determiner domain is 2”. The domain

of mask contains two vales: mask = 0xFFFF if the message

bit mi = 1, and mask = 0x0000 if mi = 0. Consequently,

mask can take two possible values, whose Hamming Weight

(HW) is 16 ≥ 2.

The side channel attack presented in [19] uses a single

power consumption trace. The first step of the attack is to

select, for each mi, a points of interest (PoIs). These are the

points (for each i) where the mask value is calculated, stored

and loaded. These PoIs are then classified using clustering

algorithms. The PoIs are classified then in two groups G1

and G2, then the mean of each of these groups is calculated

E(G1) and E(G2). Then based in the difference of the means,

one set contains the PoIs of the mi = 0 and the other the

PoIs such that mi = 1. Recovering the message and with

public information of the Kyber.KEM, any shared key can

be recovered. This strategy is known as determiner leakage

attack [11]. This attack employs k–means, an unsupervised

ML algorithm, to classify power consumption traces measured

at the message encoding operation in the encapsulation phase,

and determine if a trace represents a mask = 0 or mask = 1
case (determiner leakage attack). By doing this, the authors are

able to retrieve the original message m with a 100% of success

rate and, with that, the secret shared key. From the engineering

perspective, the strengths of this attack are based on the fact

that only one trace is required to recover the whole message.

This simplifies the attack, as it is only necessary to measure the

power consumption once. Additionally, it is mentioned that the

k–means algorithm is trained with 500 traces, which should

be considered as a low quantity. However, k–means is one of

the simplest ML models, which means that the attack might

be simplified with more sophisticated algorithms.

Other study that also exploits the determiner leakage is

presented in [17]. In this case, the authors propose an attack

that is successful up to the 5th–order masked implementation

of CRYSTALS–Kyber. In this case the target is not the encode

function used in the encapsualtion, but the re–encryption

procedure of the decapsulation. Higher order masking is a

measure against side channel leakage. A w-order masking

consists into splitting a sensitive variable x into w+1 shares,

and operate separately on the shares. In this case, the attack

is based on MLPs that learn from power consumption traces.

Specifically, these MLPs are able to identify the shares for

each message bit in a 1st–order implementation by ana-

lyzing the gamma parameter of their first layer. With this

information, the authors augment the MLPs to be successful

against higher–order implementations of CRYSTALS–Kyber

by transfer learning (they call it recursive learning). This

means that, to a attack a w–order masked implementation,

the MLP is initialized with the weights of the (w − 1)–order

masked implementation MLP. Additionally, the authors specify

that this methodology works better with the two first bits of

each byte, and propose a cyclic rotation method to enhance

the overall results. To obtain all the bits correctly is used a

property of the LWE-based cryptosystem, this is that the bits

of the message can be rotated manipulating the ciphertext.

Let consider a polynomial p ∈ Rq and ft(x) = xt ∈ Rq ,

then pt = p · xt is a polynomial with the same coefficients of

p. Since Rq is an anti-cyclic polynomial ring, we have that

for i ≤ t pti = −pn−t+i and for t ≤ i ≤ n − 1 pti = pi−t.

This property is exploited in several attacks against Kyber and

other LWE-based cryptosystems.

The average bit recovery success against the implementation

with 5th–order masking, with only one trace is of 97.99%,

which implies a message recovery success of (97.99%)256 =
0.56%. This results are much better for a higher number of

traces, being for 5 traces the best result presented with a

87.07% of success rate in message recovery. A limitation of

this attack is the large size of the training and testing sets

that uses; since are required 30000 training traces and 2500
testing traces, combined with the original message (MLPs are

supervised). Finally, it is not specified if dropout layers or any

cross–validation process was executed, which are typical tools

to avoid overfitting.

C. Plaintext Checking Oracle

The attack presented in [18] consists in the construction of

a Plaintext-Checking (PC) oracle, using side channel leakage

of information. the target of the attack is the re-encryption

part of the decapsulation algorithm. A previous binary PC

2349

TABLE IV
AI–BASED SCAS AGAINST CRYSTALS–KYBER.

Reference Target traces Algorithm Results
[19] message encoding operation (encapsulation) Power consumption k–means Message recovery (100%)
[17] re–encryption step of the decapsulation Power consumption MLP Message Recovery
[18] re–encryption step of the decapsulation Electromagnetic emanations Welch’s t–test and k–means Secret key recovery
[20] decapsulation algorithm Power consumption MLP Message Recovery (100%)

oracle attack, published by Ravi et al. in [21] succeed in

recovering the key of Kyber512 one coefficient at a time. The

mayor improvement in the parallel PC oracle approach is to

optimize the attack in the number or traces needed and the

overall time that it takes. The target of the PC oracle is uased

to recover the shared secret bites. To set up the PC oracle

Rajendran et. al. make use of the fact that the re-encryption

procedure is deterministic and depends solely on the message

(shared secret) m. Knowing this information one can design

ciphertexts of specifics m and study the side channel leakage.

Any ciphertext of Kyber has the form c = (u, v) ∈ Rq ×
Rq , so an attacker can choose ku, Kv ∈ Zq such that u =
kux

0 and v = kvx
i. Let s denote the secret key, then the

decrypted message coefficients are given as m0 = Dc(v − u ·
s[0])andmi = Dc(−u ·si)fori ∈ {1, n−1}. The bit mi of the

decrypted message depends on the corresponding secret bit of

the key. The attacker can choose (ku, kv) such that mi = 0
for i ≥ P . For P = 1, if the attacker has access to a binary

PC oracle through side channels then the bit s0 of the key can

be recover. The viability of PC oracle attacks is estimated,

among other factors, on the number of queries to the oracle.

This is optimized using Binary Decision Threes (BDT). In

[18] is introduced how to construct an optimal BDT, i.e. one

of minimum queries. The idea of using a BDT consists on

asking the oracle with an initial parameter t, defined by the

three, then, depending on the answer of the oracle (0 or 1),

the BDT indicates a new t or the value of si.

The attack presented in [18] chooses the ciphertext as

u = 208x0 and v = 208 · t ·∑P−1
i=0 xi. The parameters of the

attack are P , called parallelization factor, the number of bits

to discover of s, and t, the parameter of the BDT. The average

number of queries for a full recovery is Q = � 28

P � · k · Qset,

where Qset is the average number of queries required to

recover P coefficients using the BDT.

The side channel attack used to setup the PC oracle in

[18] expands a previous work that used a binary leakage

of the voltage during the re-encryption procedure of Kyber.

The attack consists in two phases a pre-processing phase and

classification phase. In the multi-target version of this oracle

construction these phases are expanded from the binary version

to target P bits of the message. In the pre-processing phase

the adversary collects the measurements of the re-encryption

for all 2P values of m ∈ {0, 2P − 1}. In the following

classification phase, given an attack trace tr the adversary

compares it with the set of traces obtained before. The correct

class is selected after 2P − 1 classifications.

The best case scenario of the attack presented in [18]

recovers the full key in just 72 queries and the experimentally

verified case of P = 10 the number of queries is ≈ 232. For

these results is consider an attacker with access to a clone

device. Without using the cloning device the number of total

queries Qt = Q + Qtemp, where Qtemp denote the queries

during the pre–processing phase. In this setup the experimental

attack with the lowest number of queries is for the parameters

t = 5 and P = 4, reaching 613 queries. However, it is

proposed in [18] (though not experimentally), an attack with

parameter values t = 1 and P = 6 that reaches the number of

queries of 437.

D. Multi–bit Error Injection Attack

In [20] is presented a expansion of the multi–bit error

injection attack against SABER introduced in [22]. This attack

uses the bit flipping property [11] of LWE/R-LWE algorithms.

Let x be the encoded message polynomial and c = (u, v) the

corresponding ciphertext. Following the scheme in I it can be

expressed vi = xi + v′i for i ∈ {0, 255}. The coefficients

of x can only be q+1
2 or 0, depending on the value of the

corresponding bit of m. During decryption II there are no

operations between the coefficients of x, hence any bit mi

can be flipped in the ciphertext simply subtracting q+1
2 from

the corresponding coefficient vi.
The work in [20] presents an attack against a hardware

implementation of Kyber768. Attacking hardware implemen-

tations is more difficult than software implementations and

the attacks need to be adapted, in this case the multi–bit error

injection attack. Let consider a message m = (mi)i∈{0,31}
and the corresponding ciphertext c. A standard multi–bit error

injection attack consists on choosing an error e ∈ {0, 255}
and finding a modified ciphertext ce, such that the decrypted

message me = (m0 ⊕ e, . . . ,m31 ⊕ e). The bits of e with

value 1 flip the corresponding bits of mi for all i ∈ 0, 32.

After computing the traces of the decapsulation of ce for all

e ∈ {0, 255}, the segments where the Decode function is

applied to each message byte mi ∈ {0, 31} are all extracted.

Finally these trace segments are given as input to the MLP to

train.

This attack against a hardware implementation requires

some changes. It is introduced a tecnique called slicing. The

error e is introduced into every fourth byte. In this case, an

error is injected every four bits, hence, to recover the hole

message, 256 × 4 traces are needed. The authors show that

with 5 repetitions of each trace, that is, a total of 256× 4× 5
traces, the message success rate is 100%. The attack is carried

out with MLPs that analyzed the power consumption traces

2350

under the described conditions acquired at the execution of

the decapitation procedure of the decapsulation. It should be

considered that the initial training set was composed of 200000
traces, which were expanded via the cut–and–join technique

for a final set of 6.4M traces.

IV. CRYSTALS–DILITHIUM

Dilithium, a lattice-based post-quantum digital signature

algorithm, is one of the third round finalists of the NIST

standardization project. The security of Dilithium is based

on the hardness assumption of Module Short Integer Solution

(MSIS) and Module Learning with Errors (MLWE) problems.

As in the previous section, we denote as R and Rq the

polynomial rings where these problems are defined, taking

n = 256 and q = 223 − 213 + 1 as particular values for this

case. The elements of these rings are identified with coefficient

vectors in Z
N and Z

N
q , respectively.

A. Algorithm

The scheme design of Dilithium is based on the “Fiat-

Shamir with aborts” approach [23], consisting on a three

tuple of algorithms: key generation, signing (Table V) and

verification.

TABLE V
DILITHIUM SIGNING PROCEDURE

Signature Generation
A ∈ Rk×l

q := ExpandA(ρ)
μ ∈ {0, 1}384 := CRH(tr||M)
κ := 0, (z,h) := ⊥
while (z,h) := ⊥ do

y ∈ S̃l
γ1

:= ExpandMask(ρ′, κ)
w := Ay
w1 := HighBitsq(w, 2γ2)
c ∈ Bτ := H(μ||w1)
z := y + cs1
r0 := LowBitsq(w − cs2, 2γ2)
if ||z||∞ ≥ γ1 − β and ||r0||∞ ≥ γ2 − β then
(z,h) := ⊥

else
h := MakeHintq(−ct0,w − cs2 + ct0, 2γ2)
if ||ct0|| ≥ γ2 or the # of 1’s in h is greater than w then
(z,h) := ⊥

end if
end if
κ := κ+ l

end while
return α = (z,h, c)

To efficiently compute polynomial multiplication, one of the

most expensive operations, the NTT-based multiplication is

adopted. Considering r as the 512-th root of unity modulo

q, the domain Rq is isomorphic, by the Chinese remainder

theorem, to the product
∏

i Zq[x]/(x− ri). We have then that

each of these rings Zq[x]/(x− ri) ∼= Zq . Thus, multiplication

on Rq can be easily done by pointwise multiplication.

The attacks described on the subsequent sections aim for

signature forgery by recovering the secret key vectors. On the

first case they recover both s1 and s2 [24], while the second

only needs s1 to perform universal forgery of signatures [25].

B. Number Theoretic Transform Attack

The target of the attack presented in [24] is the step

computing NTT representation (Table VII) of secret vectors

s1, s2 [3]. In each loop of it, the initial value of len is

divided by 2. Thus, we can divide the NTT operation into

eight stages with len = 28−m at the m-th stage. First we

consider s1. Polynomials s1,i, 0 ≤ i < L, are the input values

p[N] of Table VII and, at the first stage (m = 1), p[j] is the

secret coefficient s1,i,j for each 0 ≤ j < N . Therefore, at

the first substage, p[j + len] is the coefficient s1,i,j+len with

0 ≤ j < 128. As zetas are known and precomputed values,

the difference in power consumption when the intermediate

value t = Mont r(zeta ∗ p[j + len]) is calculated, stored,

and loaded leaks information about s1,i,j+len. Then, we can

recover s1,i,j for 128 ≤ j ≤ 255 targeting this value at the

first substage of the first stage.

By repeatedly targeting t at the first substages of stages 2 ≤
m ≤ 8, we can recover s1,i,j+len for 0 < j < len = 28−m

(having fixed the values recovered on the previous stage).

Finally, coefficient s1,i,0 is not used as input of Mont r, but

it affects the computation at the last stage m = 8 of p[j] with

j = 0 for all 0 ≤ i < L. Thus, it is possible to recover it by

summing the leakage from line p[j] = p[j] + t at this point.

In the case of targeting the signature procedure, this method

can be used to recover s2 too, as this algorithm computes

NTT representation for this vector as well. Key generation

only computes NTT representation for s1. In this case, s1
is recovered targeting NTT and s2 is obtained by attacking

sampling, addition, rounding and packing operations [24].

When applying masking to the signing procedure, the ad-

vantage of this attack is lost. That motivates targeting key

generation [26]. When the masking scheme uses as modulus a

power of two the NTT multiplication is not available. In that

case, the target operation is sparse multiplication.

The studies available in [26] and [24] elaborate single power

consumption trace profiling attacks that take advantage of

the NTT leakage. Both employed MLPs to profile the device

under attack, and are able to retrieve the secret key and forge

signatures. On one hand, in [26] the authors achieve 100%
of random secret key recovery using 2000 and 8000 traces

in the training and testing sets, respectively. These results are

maintained when the masked version of Dilithium is attacked.

In this case, the target is the polynomial multiplication, but the

number of traces in the training set increases to 9000, which

represents the complexity increase when countermeasures are

applied. On the other hand, the secret key vectors s1 and s2
are obtained in [24] with a 100% and 92.91% of recovery

success rate, respectively. To solve the masked version, the

attacks targets the key generation procedure, specifically the

sampling, addition, rounding and, packing operations. With

this methodology, the recovery success rate increases to 98%,

and the size of the training and testing sets are equal in the

non–protected and protected versions.

2351

TABLE VI
AI–BASED SCAS AGAINST CRYSTALS–DILITHIUM.

Reference Target Traces Algorithm Results
[26] NTT of signing procedure Power consumption MLP long term key recovery (100%)
[24] NTT of signing procedure Power consumption MLP long term key recovery
[25] bit–unpacking function of signing process Power consumption MLP secret key recovery

TABLE VII
DILITHIUM NTT SCHEME

Procedure NTT (p[N])
k = 1
for (len = 128; len > 0; len >>= 1)

for (start = 0; start < N ; start = j + len)
zeta = zetas[k]
k := k + 1
for (j = start; j < start+ len; ++j)

t = Mont r(zeta ∗ p[j + len])
p[j + len] = p[j] + 2 ∗Q− t
p[j] = p[j] + t

zetas : precomputed table
Mont r : Montgomery reduction, Q: prime, N: dimension

C. Bit–Unpacking Function Attack

There is another vulnerable leaking point on the signature

algorithm found when generating the vector y (see Table V

line 5) [25]. This polynomial vector is gathered from a bit

string obtained expanding an initial randomness seed ρ′. This

is performed by a function that views the bit-string as a byte-

string and unpacks it into l polynomials, where each one is

unpacked separately [25]. This function iterates N/4 times

for each polynomial, as it computes four coefficients, (i)th,

(i+ 1)th, (i+ 2)th, (i+ 3)th, on each i-th iteration.

The power traces of its execution leak information about the

generated coefficients, concretely whether they are zero or not.

Marzoygui et al., [25] developed a profiling attack exploiting

this bit–unpacking function leakage in the signing process.

They constructed four different MLPs, one for each ith, (i+
1)th, (i + 2)th, and (i + 3)th coefficients of the polynomial.

The results provided, in terms of accuracy, precision, recall and

specifity, show the success of their proposal, as their values

are all above 99.90%.

This knowledge can be used to recover the secret key s1 in

four steps. We denote with yi,j the jth coefficient of the ith

polynomial of vector y, for i ≤ l and j ≤ 256. First we need

to filter the predictions of the trained classifiers to avoid false-

positives (i.e. predicting that a coefficient yi,j is zero when it

is not), as this would affect the system of equations we are to

solve. Thus, conditions are defined for the z values (Table V

line 9). As |(cs1)i,j | ≤ τ · η = β, assuming yij = 0 means

|zi,j | = |yi,j+(cs1)i,j | ≤ β as well. Then, we can dismiss the

possibility that a coefficient yi,j is zero if the corresponding

|zi,j | ≥ β. Also, each coefficient (cs1)i,j can be approximated

by a normal distribution with variance σ2 = (2·η)2−1
12·τ . Then,

if |zi,j | > 2 · σ, we can suppose yi,j �= 0. This reduces the

number of false positives as the machine-learning classifier is

only invoked to predict whether yi,j is zero if |zi,j | ≤ 2 · σ.

Considering we traced M signatures, we have zm = ym +
cms1 for each m-th signature. Using the filter previously

described, we obtain a list of L triples (m, i, j) such that

ymi,j = 0 is predicted. Factoring in the erroneous predictions,

we have the following set of equations zmi,j = (cms1)i,j + e,

where e = 0 when the classifier correctly predicted ymi,j = 0
and e �= 0 otherwise. Thus, the goal is to obtain s1 from

z = Cs1 + e, where C ∈ Z
|L|×n stems from the challenge

polynomials cm, z enclose the signature coefficients zmi,j and

e is a vector of error coefficients. Notice that the problem

can be separated into l independent equation systems, one

for each polynomial in s1, as to obtain cs1 we multiply c
(a single polynomial with exactly τ non-zero coefficients)

independently with each one of the l polynomials in the vector

s1 ∈ Sl
η . From now we denote as s the polynomial (s1)i

currently solving.

Assuming that yi,j = 0 is correctly predicted means that e
is zero for most of the equations. From this is possible to

obtain a first key candidate ŝ1 ∈ R
n close to the correct

secret key s1. Since ||cs + e||∞ < q, there are no modular

reductions involved. then, we can view the problem of solving

the system of linear equations z = Cs+ e as a LWE problem

without modular reduction and obtain a solution ŝ1 ∈ R
n

applying the least-squares method [ref approach]. This method

computes ŝ1 as the vector minimizing the squared euclidean

norm ||Cŝ−z||22 and can be easily computed using the formula

ŝ = (CTC)−1·C·z. This converges to a correct solution: given

enough equations, �ŝi
 = si for all i ∈ {1, . . . , n}. Then, to

obtain the secret key from this solution candidate they observe

that the following should hold for each coefficient in ŝ: (1)

Either rounding up or down should yield the correct solution,

�ŝj� = (s)j or �ŝj
 = (s)j , (2) for coefficients j such that

ŝj is close to an integer, the coefficient candidate should be

correct.

As for most of the equations in the system e = 0, we

are looking for the polynomial that maximizes the number

of fulfilled equations. Therefore they formulate an Integer

Lineal Program where the information about the solution

candidate ŝ is included as constraints. Finally, they run solvers

for this program until they obtain a solution that satisfies at

least (1 − e) · N equations, where e is the assumed false-

positive rate. This solutions should match the i-th secret key

polynomial from s1. Running this method for each one of the

l polynomials produce a final secret key candidate s1.

V. AI ANALYSIS

In this section we provide a deeper analysis of the AI

models, configurations, and metrics employed in the previ-

2352

TABLE VIII
ATTACK ALGORITHMS SPECIFICATIONS.

Reference Algorithm Train/Test set Cross–validation/Overfitting Act. func. Optimizer Batch size Epochs Loss func.
[17] MLP (binary) 30K/2.5K Batch–Normalization ReLU/Softmax Nadam 1024 100 Binary cross–entropy
[20] MLP (multi–class) 200K/5.12K Batch–Normalization ReLU/Softmax Nadam 1024 100 Categorical cross–entropy
[26] MLP (multi–class) 2K/8K Batch–Normalization ReLU/Softmax adam 32 100 Categorical cross–entropy
[24] MLP (multi–class) 50K/10K Batch–Normalization/Grid–search ReLU/Softmax Nadam 32 500 Categorical cross–entropy
[25] MLP (multi–class) - Dropout - Hyperband - - -

ously described works. Table VIII summarizes the principal

characteristics of the AI algorithm of each attack, including:

the size of the training and testing sets, how overfitting was

prevented and which cross–validation procedure was executed,

the activation function and optimizer used, the size of the

batches, the number of epochs, and the loss function used.

We did not include [19] and [18] in Table VIII because they

utilized a simple k–means clustering algorithm and do not

specify any of the parameters of interest. As a comment, it

would be useful to study different classification algorithms,

such as Support Vector Machines (SVM) or Random Forest

Classifiers, in similar experiences to evaluate a possible en-

hancement in the results.

The first remarkable aspect is that all studies are based on

the construction of a MLP. Despite it is a well–known and

useful model, the study of SCAs against CRYSTALS–Kyber

and CRYSTALS–Dilithium should be extended by analyzing

the performance of other algorithms, such as CNNs or RNNs.

For example, the use of CNNs has been explored against Frodo

and NewHope in [27].

It can be easily seen that most of the studies employ batch–

normalization layers to deal with overfitting. It is a procedure

that provides regularization in the learning process, making

the training faster and more stable. However, it is not enough

to ensure that the model generalizes and, therefore, in [24] the

authors also apply a 10–fold grid search process to optimize

the parameters. Alternatively, [25] is the only article that uses

dropout layers. To prove that the proposed algorithm does

not overfitt, it is usual to include graphics that represent the

training and testing accuracy and loss. Nevertheless, among the

studied works, only [26] and [24] provides these graphics. We

find this aspect crucial to show the reliability of the models.

Regarding the activation functions, all works used the Rec-

tified Linear Unit (ReLU) [28] between hidden layers and the

Softmax before the output layer. The selection of the Softmax

activation function is logical for this application since the built

MLPs are not excessively complex, the number of outputs is

reduced, and the proposed problems are binary or multi–class.

However, it would be interesting to study if the results can be

improved using the Exponential Linear Unit (ELU) [29] or the

Scaled Exponential Linear Unit (SELU) [30] instead of ReLU.

It has been shown that the former enhances the outcomes in

classification problems, while the latter learns faster and does

not have the vanishing gradient problem [28].

Similarly, all settings employed the Adam (Adaptive Mo-

ment Estimation) or the Nadam (Nesterov–Adam) optimizers.

Their principal characteristics are very similar, as both update

the learning rate in each cycle and store an exponentially

decaying average of past square gradients. These features lead

Adam and Nadam to be fast methods that converge rapidly,

but that are computationally expensive. Their difference lays in

the use of the Nesterov momentum by Nadam, instead of the

classical momentum used by Adam. This means that Nadam

does not miss any local minima when optimizing, but it may

slow the optimization. There is no doubt these are suitable

optimizers to construct SCAs MLPs. However, both should

be tested in order to select the best one for each specific

application, as their performance may vary depending on the

preprocessing steps, data utilized or model architecture.

The selection of the loss functions is adequate; the works

that solve a binary problem (i.e. bit prediction) use the binary

cross–entropy, whereas the multi–class classification problems

apply the categorical cross–entropy.

Lastly, it should be noticed that only the use of dropout

and the hyperband optimization technique is specified in [25].

Hyperband is a hyperparameter optimization method based on

the early–stopping algorithm (optimize the parameters until

the model starts to overfitt) and that adaptively allocates a

pre-defined resource, e.g., iterations, data samples or number

of features, to randomly sampled configurations [31]. Despite

we find its use appropriate, it would be interesting to know the

specific loss and activation functions employed. Interestingly

enough, while the rest of studies provide their outcomes in

terms of success rate, this work is the only one that uses

accuracy, precision, recall and specificity. These metrics are

very useful to analyze how a AI model performs and verify

if it generalizes well and, in case it does not, understand if

it fails in false negative or false positives. From the security

point of view, this is a critical aspect, being a false positive

the worst case scenario.

VI. CONCLUSION

The recent technological advances suggest that the pos-

sibility of developing a quantum computer able to execute

Shor’s algorithm is an upcoming reality. For this reason,

the popularity of PQC has notably increased the last few

years, and the NIST has selected two new schemes have

been standardized: CRYSTALS–Kyber for PKE and KEM, and

CRYSTALS–Dilithium for digital signatures, among others.

However, similarly to classical cryptography, this algorithms

present certain limitations that may be exploited with SCAs

to recover senstive information. Among this attacks, those

based on AI models are becoming more important due to

their potential. In this work, we collected the newest and most

2353

important AI–based SCAs against the recently standardized

cryptosystems, and analyze their reliability and limitations.

Among them, we found that more emphasis to avoid overfitting

should be made, and the analysis of more complex proposals

that require less training samples might be beneficial. In future

works, we plan to study the performance of different AI

models, such as SVMs, to reduce the number of traces needed

to conduct the training.

ACKNOWLEDGMENT

This work was supported in part by the R&D&I

project P2QProMeTe, Grant PID2020-112586RBI00 funded

by MCIN/AEI/10.13039/501100011033; in part by ORA-

CLE Project, with reference PCI2020-120691-2, funded by

MCIN/AEI/10.13039/501100011033, and European Union

“NextGenerationEU/PRTR”, and in part by the EU Horizon

2020 research and innovation programme, project SPIRS

(Grant Agreement No. 952622). L.H.A. and E.I.H. would like

to thank CSIC Projects CASDiM and EFiDiP, respectively, for

their support.

REFERENCES

[1] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM J. Comput., vol. 26,
no. 5, 1997, https://doi.org/10.1137/S0097539795293172.

[2] R. M. Avanzi, J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyuba-
shevsky, J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehlé,
“CRYSTALS-Kyber algorithm specifications and supporting docu-
mentation,” 2017, https://pq-crystals.org/kyber/data/kyber-specification-
round3-20210131.pdf.

[3] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevesky, P. Schwabe,
G. Seiler, and D. Stehlé, “CRYSTALS-Dilithium: Algorithm
specifications and supporting documentation,” 2020, https://pq-
crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf.

[4] G. Alagic, D. Cooper, Q. Dang, T. Dang, J. M. Kelsey, J. Lichtinger,
Y.-K. Liu, C. A. Miller, D. Moody, R. Peralta, R. Perlner, A. Robinson,
D. Smith-Tone, and D. Apon, “Status report on the third round of
the NIST post-quantum cryptography standardization process,” 2022,
https://doi.org/10.6028/NIST.IR.8413.

[5] J. McCarthy, “What is artificial intelligence?” 2004. [Online].
Available: http://35.238.111.86:8080/jspui/bitstream/123456789/274/1/
McCarthy John What%20is%20artificial%20intelligence.pdf

[6] L. Hernández-Álvarez, L. González-Manzano, J. de Fuentes, and
L. Hernández Encinas, “Biometrics and artificial intelligence: Attacks
and challenges,” in Breakthroughs in Digital Biometrics and Forensics.
Springer, 2022, pp. 213–240, http://doi.org/10.1007/978-3-031-10706-
1 10.

[7] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems,” in Proc. 1996 Advances in Cryptol-
ogy - CRYPTO ’96, 16th Annual International Cryptology Conferenc.
Springer, 1996, pp. 104–113, https://doi.org/10.1007/3-540-68697-5 9.

[8] F. Standaert, Introduction to Side-Channel Attacks. Springer, 2010,
http://doi.org/10.1007/978-0-387-71829-3 2.

[9] D. Genkin, A. Shamir, and E. Tromer, “Acoustic cryptanalysis,” J
Cryptol, vol. 30, pp. 392–443, 2017, https://doi.org/10.1007/s00145-015-
9224-2.

[10] J. Quisquater and D. Samyde, “Electromagnetic analysis (EMA):
Measures and counter-measures for smart cards,” in Smart Card
Programming and Security: International Conference on Research
in Smart Cards, E-smart 2001. Springer, 2001, pp. 200–210,
https://doi.org/10.1007/3-540-45418-7 17.

[11] P. Ravi, S. Bhasin, S. S. Roy, and A. Chattopadhyay, “On exploiting mes-
sage leakage in (few) NIST PQC candidates for practical message recov-
ery attacks,” IEEE Transactions on Information Forensics and Security,
vol. 17, pp. 684–699, 2022, http://doi.org/10.1109/TIFS.2021.3139268.

[12] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2006, https://www.springer.com/gp/book/9780387310732.

[13] G. Hinton, Deep Belief Nets. Springer US, 2010, pp. 267–269,
http://doi.org/10.1007/978-0-387-30164-8 208.

[14] X. Ying, “An overview of overfitting and its solutions,” Jour-
nal of Physics: Conference Series, vol. 1168, no. 2, 2019,
http://doi.org/10.1088/1742-6596/1168/2/022022.

[15] G. Zaid, L. Bossuet, A. Habrard, and A. Venelli, “Methodology for
efficient CNN architectures in profiling attacks,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, vol. 2020, no. 1, pp.
1–36, 2019, http://doi.org/10.13154/tches.v2020.i1.1-36.

[16] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M.
Schanck, P. Schwabe, G. Seiler, and D. Stehlé, “CRYSTALS-Kyber,”
Online publication, 2020, https://pq-crystals.org/.

[17] E. Dubrova, K. Ngo, and J. Gärtner, “Breaking a fifth-order masked
implementation of CRYSTALS-Kyber by copy-paste,” Cryptology ePrint
Archive, Paper 2022/1713, 2022, https://eprint.iacr.org/2022/1713.

[18] G. Rajendran, P. Ravi, J.-P. D’Anvers, S. Bhasin, and A. Chattopadhyay,
“Pushing the limits of generic side-channel attacks on LWE-based KEMs
- parallel PC oracle attacks on Kyber KEM and beyond,” Cryptology
ePrint Archive, Paper 2022/931, 2022, https://eprint.iacr.org/2022/931.

[19] B.-Y. Sim, J. Kwon, J. Lee, I.-J. Kim, T.-H. Lee, J. Han, H. Yoon,
J. Cho, and D.-G. Han, “Single-trace attacks on message encoding in
lattice-based KEMs,” IEEE Access, vol. 8, pp. 183 175–183 191, 2020,
https://doi.org/10.1109/ACCESS.2020.3029521.

[20] Y. Ji, R. Wang, K. Ngo, E. Dubrova, and L. Backlund, “A side-channel
attack on a hardware implementation of CRYSTALS-Kyber,” Cryptology
ePrint Archive, Paper 2022/1452, 2022, https://eprint.iacr.org/2022/1452.

[21] P. Ravi, S. Sinha Roy, A. Chattopadhyay, and S. Bhasin,
“Generic side-channel attacks on CCA-secure lattice-based PKE
and KEMs,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, vol. 2020, no. 3, pp. 307–335, 2020,
http://doi.org/10.13154/tches.v2020.i3.307-335.

[22] R. Wang, K. Ngo, and E. Dubrova, “Making biased dl models work:
Message and key recovery attacks on saber using amplitude-
modulated em emanations,” Cryptology ePrint Archive, Paper
2022/852, 2022, https://eprint.iacr.org/2022/852. [Online]. Available:
https://eprint.iacr.org/2022/852

[23] V. Lyubashevsky, “Fiat-shamir with aborts: Applications to lattice and
factoring-based signatures,” in Advances in Cryptology–ASIACRYPT
2009: 15th International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 2009, pp. 598–616,
https://doi.org/10.1007/978-3-642-10366-7 35.

[24] J. Han, T. Lee, J. Kwon, J. Lee, I.-J. Kim, J. Cho, D.-G. Han, and B.-Y.
Sim, “Single-trace attack on NIST round 3 candidate Dilithium using
machine learning-based profiling,” IEEE Access, vol. 9, pp. 166 283–
166 292, 2021, https://doi.org/10.1109/ACCESS.2021.3135600.

[25] S. Marzougui, V. Ulitzsch, M. Tibouchi, and J.-P. Seifert, “Pro-
filing side-channel attacks on Dilithium: A small bit-fiddling leak
breaks it all,” Cryptology ePrint Archive, Paper 2022/106, 2022,
https://eprint.iacr.org/2022/106.

[26] I.-J. Kim, T. Lee, J. Han, B.-Y. Sim, and D.-G. Han,
“Novel single-trace ML profiling attacks on NIST 3 round
candidate Dilithium,” IACR Cryptol. ePrint Arch., vol. 2020,
p. 1383, 2020, https://www.semanticscholar.org/paper/Novel-
Single-Trace-ML-Profiling-Attacks-on-NIST-3-Kim-
Lee/650d74589c7f5e4fadc2168d8b78b6ad0c715cde.

[27] F. Aydin, P. Kashyap, S. Potluri, P. Franzon, and A. Aysu, “Deepar-
sca: Breaking parallel architectures of lattice cryptography via learning
based side-channel attacks,” in Embedded Computer Systems: Archi-
tectures, Modeling, and Simulation. Springer, 2020, pp. 262–280,
https://doi.org/10.1007/978-3-030-60939-9 18.

[28] A. D. Rasamoelina, F. Adjailia, and P. Sinčák, “A review of activation
function for artificial neural network,” in 2020 IEEE 18th World Sym-
posium on Applied Machine Intelligence and Informatics (SAMI), 2020,
pp. 281–286, https://doi.org/10.1109/SAMI48414.2020.9108717.

[29] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate
deep network learning by exponential linear units (ELUs),” ArXiv, vol.
abs/1511.07289, 2016.

[30] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-
normalizing neural networks,” ArXiv, vol. abs/1706.02515, 2017.

[31] L. Li, K. G. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Efficient hyperparameter optimization and infinitely many armed ban-
dits,” ArXiv, vol. abs/1603.06560, 2016.

2354

