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Abstract—Phishing is a major threat to internet security, tar-
geting human vulnerabilities instead of software vulnerabilities. It
involves directing users to malicious websites where their sensitive
information can be stolen. Many researchers have worked on
detecting phishing URLs, but their models have limitations such
as low accuracy and high false positives. To address these issues,
we propose a machine-learning model to detect phishing URLs.
To detect these malicious URLs, we use a dataset of over 500K
entries collected from the Kaggle website. The dataset is used
to train five supervised machine-learning techniques, including
K-Nearest Neighbors (KNN), Logistic Regression (LR), Decision
Tree (DT), Support Vector Machine (SVM), and Random Forest
(RF). The aim is to improve the performance of the classifier
by studying the features of phishing websites and selecting a
better combination of them. To measure the performance, we
considered three parameters: accuracy, precision, and recall. The
LR technique yielded the best performance, demonstrating its
efficacy in detecting phishing URLs.

Index Terms—Phishing URL, Machine Learning, KNN, SVM,
Logistic Regression.

I. INTRODUCTION

Phishing is a form of online deception where fraudsters

fabricate fraudulent websites or emails that seem genuine to

dupe users into divulging sensitive information, such as credit

card details or login credentials [1]. In recent times, phishing

has emerged as one of the most prominent cybersecurity

menaces. Phishing attacks can be very effective because they

exploit human vulnerabilities rather than technical vulnerabil-

ities. These attacks often use social engineering techniques

to trick users into giving away sensitive information, such

as login credentials and personal information. Phishing URL

detection refers to the process of identifying and blocking

URLs (Uniform Resource Locators) that lead to phishing

websites [2]. This involves using various techniques to analyze

URLs and their associated web content to determine whether

they are legitimate or malicious.

As a result, many organizations and individuals have be-

come more aware of the dangers of phishing and have taken

steps to protect themselves. One of the most effective ways

to prevent phishing attacks is to detect and block phishing

URLs. Phishing URL detection research has been ongoing for

several years, and it has become increasingly important as

phishing attacks have become more sophisticated. Researchers

have developed various techniques and algorithms to identify

phishing URLs based on different characteristics, such as the

URL structure, domain reputation, and content analysis. Some

common techniques used in phishing URL detection include:

• Blacklisting: This involves maintaining a list of known

phishing URLs and blocking access to them.

• Machine learning: This involves training models to iden-

tify patterns in phishing URLs and using those models to

detect new phishing URLs.

• URL analysis: This involves analyzing the structure

and content of URLs to identify suspicious or malicious

characteristics.

• Domain reputation analysis: This involves analyzing

the reputation of the domain associated with a URL to

determine whether it is likely to be malicious.

• Content-based analysis: This involves analyzing the

content of a webpage associated with a URL to determine

whether it is likely to be malicious.

All the techniques mentioned for detecting phishing web-

sites have their limitations. For instance, the blacklist tech-

nique relies on an up-to-date and comprehensive list of known

malicious URLs or IP addresses, but attackers can easily

create new phishing websites or move their operations to

new IP addresses, making it difficult to maintain an accurate

blacklist. URL analysis may not be effective at detecting

phishing attacks that use legitimate websites as a platform.

For example, an attacker may create a phishing email that

links to a legitimate website but directs the user to enter

sensitive information on a fake login page. In this case, the

URL analysis may not detect any malicious activity, as the

website itself is legitimate. The drawback of domain reputation

analysis is that it focuses on the domain name itself, rather

than the content of the website. This means that even if

a domain has a good reputation, it may still be hosting

phishing content or other malicious activity. In Content-based

analysis, attackers can use techniques such as URL cloaking or

obfuscation to hide the true destination of a link or to make the

phishing content appear legitimate. This can make it difficult

for content-based analysis to detect phishing websites.

To overcome those limitations, machine learning and deep

learning techniques have been widely used for phishing URL

detection, allowing for the creation of more accurate models

that can detect even previously unseen phishing URLs. In [3],

Zamir, Ammara, et al. introduced a framework for identifying
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phishing websites through a stacking model. In this process,

various feature selection techniques such as information gain,

gain ratio, Relief-F, and recursive feature elimination (RFE)

are utilized to analyze the characteristics of the phishing

dataset. In [4], the authors evaluated and compared several

machine learning techniques to predict phishing websites. The

dataset used in their study was obtained from the PhishTank

website, consisting of roughly 11,000 sample websites. For

testing purposes, 10% of the samples were utilized. In another

paper [5], the authors proposed three separate deep-learning

techniques for the identification of phishing websites. These

techniques include long short-term memory (LSTM) and con-

volutional neural network (CNN) for comparative purposes, as

well as an LSTM-CNN hybrid approach. Al-Tamimi, Y., and

M. Shkoukani. [6] created a model utilizing machine learning

algorithms, specifically the decision tree and random forest.

Previous research in the field of machine learning for

predicting phishing URLs had limitations, such as a narrow

focus on accuracy without considering other performance

metrics, as well as small sample sizes in some studies. In light

of these limitations, we proposed a novel machine-learning

model specifically designed for predicting phishing URLs. The

objectives of this research article are as follows:

• Developed a machine learning model that can accurately

and efficiently identify phishing websites or URLs.

• Minimize the false positives and false negatives rate.

• Improve the security of online systems and protect users

from falling victim to phishing attacks.

The remainder of the paper is divided into the following

sections: In Section II, a literature review is presented. Sec-
tion III of the document covered methodology. Results and

discussion were maintained in Section IV. Finally, Section V
addresses the paper’s concluding observations.

II. LITERATURE REVIEW

Numerous methods have been suggested to counter the

menace of phishing attacks, many of which involve extracting

phishing features. However, some of these techniques require

running the page, which can be resource-intensive and time-

consuming. The authors of [1] proposed an intelligent system

that serves as an extension to internet browsers, providing an

additional functionality of detecting phishing websites. The

system is designed to automatically alert the user when a

phishing website is detected. The algorithm used in the system

is limited to the random forest algorithm. In [7], the authors

employed two classifiers, Random Forest and Support Vector

Machine (SVM), to detect phishing elements. The objective

was to help users determine whether a given link was a

legitimate website or a phishing website. However, the study

did not include any performance metrics such as accuracy

or precision. To address this gap, in this paper [8] analyzes

the common attributes exhibited by phishing websites and

develops a model to detect such websites. The study employed

five machine learning algorithms and achieved good accuracy,

especially with the use of Artificial Neural Network (ANN).

However, the dataset was split only into 80% and 20%, which

may not provide a comprehensive evaluation of the model’s

performance. In contrast, this paper [9] proposes a framework

for detecting phishing websites using random forest ensemble

techniques. The approach involves combining random forest

with k-means clustering to capture feature correlation. How-

ever, the study is limited to evaluating the framework using a

dataset containing only 5000 samples. The researchers in this

study [10] performed cross-validation to test the effectiveness

of the model, as well as to assess the correlation between

the features. They used Logistic Regression to determine the

significance of the features and also tested the Multinomial

Naı̈ve Baye classifier. The results revealed that the Logistic

Regression classifier had the best accuracy compared to other

classifiers. Table I provides a summary of different studies that

have used various machine learning algorithms to classify or

predict outcomes for a particular task or problem. Each study

is represented by a row in the table, and the columns represent

different aspects of the study, such as the algorithms used, the

performance metrics evaluated, and the size of the training and

testing datasets.

The first column lists the references for each study. The

second column specifies the machine learning algorithms

used in each study. The third column indicates whether the

study reported accuracy as a performance metric. The fourth

column indicates whether the study reported precision as a

performance metric. The fifth column indicates whether the

study reported recall as a performance metric. A checkmark

(�) in this column means that the study reported accu-

racy/precision/recall, while a cross (�) means that it did not.

The sixth column shows the size of the training and testing

datasets used in each study. The percentage values indicate

the proportion of the dataset used for training and testing,

respectively. In some studies, the size of the dataset is not

reported (N/A).

III. METHODOLOGY

In this section, we explain how our proposed model works

for detecting phishing URLs. To conduct the experiment, we

employed five robust machine learning algorithms, which were

executed using Python. These algorithms include Logistic

Regression, KNN, Decision Tree, Random Forest, and SVM,

all of which used the default settings. Figure 1 describes the

total working procedure of this experiment.

A. Dataset Description

The dataset was obtained from Kaggle [11], which is a

reliable platform for datasets, and it contains 549,346 entries.

The given dataset consists of a pair of columns, wherein the

first column enlists distinct URLs, and the second column

denotes the labels. The prediction column comprises two cat-

egories: Good (72%), indicating that the URLs are legitimate

and do not possess any malicious content, while Bad (28%)

signifies that the URLs are deceptive and carry malicious

content, making them phishing sites. Table II showcases a

sample dataset.
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TABLE I
ANALYSIS OF PREVIOUS RESEARCH WORK.

Ref. Algorithms Accuracy Precision Recall Training & Test size
Alswailem, Amani, et al. [1] RF � � � 80% / 20 %

Helmi et al. [7] RF, SVM � � � N/A
Ameya Chawla [8] RF, DT, LR, KNN, ANN � � � 80% / 20%

Mohammad A. Alsharaiah et al. [9] RF � � � 70% / 20%
Zongo et al. [10] NV, LR � � � 80% / 20%
Proposed Model SVM, LR, RN, DT, KNN � � � Nine Sample

Data
Collection

Manual
Labeling

Label
Verification

Pre-
processing Data Split

Test Data

Train Data

Trained
ModelModel

Class
prediction

Missing
Value
Check

Dimension 
Check

Noise
removal

Feature
Extraction

Spelling
Correction

Fig. 1. Machine Learning Workflow: From Data to Model.

TABLE II
URL CLASSIFICATION: LEGITIMATE VS. MALICIOUS.

URL Label
www.dghjdgf.com/paypal.co.uk/cycgi-bin/webscrcmd=

home-customer&nav=1/loading.php
bad

anonymeidentity.net/remax./remax.htm bad
lastminutevillas.net/ good
lasvegasbroker.com/ good

B. Data Pre-processing

Data pre-processing is the process of preparing and cleaning

raw data to be used in machine learning models. This involves

several steps, including data cleaning, missing value check,

data transformation, and data reduction. We have used all the

above pre-processing steps in our experiment. First, we have

checked whether there are any missing values or not. In this

dataset, we do not find any missing values.

Data cleaning is another important step that involves re-

moving any errors or inconsistencies in the data, such as

missing values, duplicates, or outliers. This ensures that the

data is accurate and reliable for analysis. We do not get any

missing values for this dataset. But, we get a good number

of duplicate values like 42151. Before going to splitting the

dataset into train and test, we remove those duplicate data first.

To check the outliers in the URL dataset, we applied outlier

detection and handling techniques to improve the accuracy and

reliability of the machine-learning model.

As we work on the URL, text tokenization is an important

process for this kind of data. Text tokenization is the process of

breaking down text into smaller units, called tokens, which can

then be used as input for machine learning models. Tokens are

usually words, but they can also be phrases, symbols, or other

types of units depending on the task at hand. Tokenization

is a critical step in machine learning tasks that involve text

analysis. The main goal of text tokenization is to convert

raw text data into a format that can be easily processed by

machine learning algorithms. There are several methods for

text tokenization. In this experiment, we have used Word

Tokenization which involves breaking down the text into

individual words or terms.

We have used another pre-process technique called text

stemmed. Text stemming is a natural language processing

technique used to reduce words to their base or root form,

which is often referred to as the “stem.” The purpose of

stemming is to reduce the dimensionality of the text data

and to group together different forms of the same word,

which can help improve the accuracy of certain text analysis

tasks, such as information retrieval or sentiment analysis.
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TABLE III
THIS TABLE REPRESENTS TRAINING AND TESTING SAMPLE SIZES.

Training Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Test Size 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Stemming algorithms typically work by removing suffixes

from words, which can include tense, pluralization, and other

grammatical variations. There are several stemming algorithms

available, including the Porter stemmer, Snowball stemmer,

and Lancaster stemmer. In this experiment, we used Snowball

stemmer here. The Snowball stemmer works by applying a set

of rules to a word to transform it into its base form. The rules

are based on patterns of word endings, prefixes, and suffixes.

The stemmer applies the rules in a step-by-step manner until

it arrives at the root form of the word.

C. Split the dataset
In machine learning, splitting a dataset involves dividing

it into two or more distinct subsets to train and evaluate a

machine learning model. Typically, this involves creating a

training set and a testing set. The training set is used to

teach the model, while the testing set is used to assess its

performance on new, unseen data. This approach is crucial to

avoid overfitting the model to the training data and ensure its

ability to generalize to novel data. Here are the steps we use

to divide the dataset into training and testing sets:

• First, we imported the necessary libraries like pandas,

scikit-learn, etc. and load the dataset into a pandas

dataframe.

• Next, to divide the data into two separate sets, namely the

training set and the testing set, we utilized the ”train-test-

split” function from the scikit-learn library. The purpose

of creating the training set was to train the machine

learning model, while the testing set was utilized to assess

the model’s performance.

• Once the data was divided, we utilized the training set

for training the machine learning model, while the testing

set was used to assess the model’s performance.

A common split is to use 70% of the data for training and

30% for testing. But in this experiment, we have used nine

training samples and nine testing samples that are shown in

table III. We used nine different training and testing sizes in

order to investigate the impact of varying dataset sizes on the

machine learning model’s performance. By using a range of

training and testing size combinations, we can analyze how

the model’s accuracy, precision, recall, or other performance

metrics change with different proportions of data used for

training and testing.

D. Implemented Model
In this experiment, we have used five robust machine

learning algorithms. For all algorithms, we find a good result.

Comparing all five algorithms, logistic regression shows the

best result. To measure the performance of algorithms, we have

utilized three performance parameters. Table IV represent the

details of implemented algorithms.

E. Performance Evaluation

In this experiment, we have considered a total of three

evaluation metrics, which are explained as follows:

Accuracy: Accuracy, which measures the correctness of

predictions made by a machine learning model, is determined

by the proportion of correct predictions over the total number

of predictions made. It is typically represented as a percent-

age, with perfect accuracy (100%) indicating that the model

made no mistakes in its predictions. This definition can be

formalized using equation 1.

Accuracy =
TP + TN

TP + TN.FP + FN
(1)

Precision: Precision is a metric used to evaluate the

performance of a machine learning model’s positive class

predictions. A high precision score indicates that the model has

a low false positive rate, meaning it is unlikely to incorrectly

classify a negative instance as positive. Therefore, precision

provides an insight into how precise or accurate the model

is when predicting positive instances. Equation 2 explains the

precision.

Precision =
TP

TP + FP
(2)

Recall: Recall tells us how well the model can identify

positive instances in the dataset. A high recall score indicates

that the model has a low false negative rate, which means that

it is unlikely to miss a positive instance. Equation 3 defines

the recall formula.

Recall =
TP

TP + TN
(3)

IV. RESULT AND DISCUSSION

In this experiment, we have utilized a total of five machine

learning algorithms such as KNN, Decision Tree, Random

Forest, SVM, and logistic regression. For all five algorithms,

we have considered three performance metrics like accuracy,

precision, and recall. For all five algorithms, we got a good

result. For the training and testing, we divided the dataset into

nine trains and test data sizes. We got the result for each train

and test data.

Fig. 2. Accuracy VS Training Percentage for the Machine Learning Algo-
rithms.
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TABLE IV
DETAILED TRAINING PARAMETERS OF IMPLEMENTED ALGORITHMS.

Name of Algorithms Description Initial Parameters
K-Nearest Neighbors [12],
[13]

KNN is a machine learning technique that involves identifying the k closest
data points in the training set to a new data point. The algorithm then assigns
the new data point to the class or value that is most common among its k
closest neighbors. If the task is classification, the class labels of the k closest
neighbors are used to determine the class label of the new data point. If the
task is regression, the average of the values of the k closest neighbors is used to
predict the value of the new data point. The value of k is an important parameter
in KNN because it determines the flexibility of the decision boundary. A smaller
value of k provides a more flexible boundary, but it is more susceptible to noise
and outliers. Conversely, a larger value of k provides a smoother boundary but
is more likely to misclassify data points that lie near the boundary between
classes.

n neighbors, weights, leaf size

Decision Tree Classifier
[14], [15]

The Decision Tree Classifier is a machine learning approach that constructs a
model resembling a tree by splitting the data repeatedly based on features that
have the best discriminatory power between classes. The algorithm generates
internal nodes representing attributes or features of the data and leaf nodes
representing class labels. It chooses the most informative feature to divide the
data based on certain measures (such as Gini impurity or information gain) and
recursively divides the data until it meets a stopping criterion. The stopping
criterion may be a limit on the maximum depth of the tree or a minimum
number of data points assigned to a leaf node.

criterion, max depth, max features

RandomForest Classifier
[16]

The Random Forest Classifier is a machine learning technique that constructs
an ensemble of decision trees known as a ”forest.” Each tree is trained on a
random subset of data and features. The algorithm begins by selecting random
subsets of the training data and features, which are then utilized to train a
decision tree. This procedure is iterated multiple times to produce a set of
decision trees, each of which produces a prediction. In the classification task,
the final prediction is obtained by aggregating the individual predictions of all
the trees, usually through a majority vote.

n estimators, max depth,
max features

SVM [17], [18] Support Vector Machines (SVM) use a technique that seeks to identify the best
hyperplane in a dataset to maximize the separation margin between different
classes. SVM is particularly useful in situations where the data cannot be
separated linearly and needs a nonlinear transformation to achieve precise
classification. The algorithm applies a kernel function to map the data into
a higher-dimensional space, where it can be effectively separated. It then
determines the optimal hyperplane in this transformed space.

kernel, gamma, degree

Logistic Regression [19] Logistic Regression is a statistical approach that allows us to predict the
likelihood of a binary outcome based on one or more predictor variables. It
is frequently used in machine learning for binary classification tasks, where
the goal is to predict whether an observation belongs to a particular class.
Logistic regression uses a logistic or sigmoid function to model the association
between the independent variables and the probability of the binary outcome.
The sigmoid function produces a probability value between 0 and 1 by taking
any real number input. The model parameters are estimated through maximum
likelihood estimation, which involves identifying the parameter values that
maximize the likelihood of observing the training data given the model.

Penalty, Maximum iterations, Class
weight

Figure 2 define the accuracy curve for all five machine

learning that is implemented in this experiment. The x-axis

defines the training percentage, and the y-axis shows the

accuracy. This graph shows that when the number of training

data is 10%, the accuracy rate is low, and that is increased

with the increase of the number of the training sample. For

all training data, the KNN performance is worse compared to

the other four algorithms. When the number of training data is

70%, the KNN accuracy slightly higher than 70%, and at other

times, it’s lower than 70%, what’s defines low performance.

For all training samples, logistic regression accuracy is best.

When the training size is 10%, the accuracy is 85% and

rose to more than 90% for 70% training data. But when the

training size has been increased, the accuracy falls down. In

the beginning, the SVM performance was low, but with the

increase of training data, it’s increased to what is near to 90%.

For all algorithms, the common thing is between 60 - 80%

training data; the accuracy is best.

Figure 3 represents the precision performance for all im-

plemented algorithms. This graph shows that, for KNN, the

precision score is the value that defines the low performance

of this algorithm. On the other hand, SVM performance is

best for almost all training samples. When the training sample

is 10%, the precision is more than 95% for SVM, but with

the increase of the training sample, the score falls down. In

the beginning, the score was low for logistic regression and

random forest, but it increased with the increase of training

data. The precision is also good for the decision tree algorithm,

but compared with other algorithms, the score is low.

Recall is another performance metric that we have consid-

ered in this experiment, and it’s shown in figure 4. This figure

shows that, in the beginning, when the training data was 10%,
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Fig. 3. Precision VS Training Percentage for the Machine Learning Algo-
rithms.

Fig. 4. Recall VS Training Percentage for the Machine Learning Algorithms.

the performance was very low for all algorithms, which is like

less than 50%. Especially for SVM, it’s very low. But with the

increase of training samples, the performance is increased for

all algorithms. When the number of training samples is 80%,

the recall value was max for decision tree. The recall value

was also higher for logistic regression for 70% training data.

When the training sample was increased to 90%, the recall

performance fell down for all implemented algorithms.

V. CONCLUSION

We started this research by analyzing previous research

work. For this experiment, we have used a secondary dataset

that is collected from Kaggle. This dataset contains two

columns like, URL and level data. To analyze the dataset,

we have used a total of five robust ML Algorithms. This

study proposes a framework for detecting phishing websites

using an effective machine learning technique that involves

preprocessing, data splitting, and classification algorithms. The

ensemble-based logistic regression technique outperformed

classical classification algorithms, achieving the best results

among the compared methods. The pre-processing steps in-

cluded removing all duplicate values before the data split.

The dataset split into nine training and testing sets, and the

performance is evaluated for different training and testing

sizes. The logistic regression ensemble learning technique

achieved the best accuracy of 93.64%. Additionally, the SVM

algorithm achieved a precision score of 96% with only 10%

training data.
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