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Abstract— 6.7 million premature deaths occur annually due
to household and ambient air pollution. Air pollution affects
individuals globally and can be derived from a variety of factors
including household cooking fuel, motor vehicles, industrial
practices, and natural fires. To tackle this global crisis, our
research focuses on understanding the spatial and temporal
patterns between air pollutants to predict future levels of air
pollutants. Our approach uses a novel deep learning methodology
that involves a spatiotemporal Convolutional-Transformer archi-
tecture (ConvTransformer) We harnessed multiple data sources
as inputs to our ConvTransformer, including several remote
sensing instruments such as NASA’s Terra+Aqua satellites with
the Moderate Resolution Imaging Spectroradiometer (MODIS),
and the European Space Agency’s Sentinel-5P satellite with
the Tropospheric Monitoring Instrument (TROPOMI), gridMET
ground-based meteorological remote-sensing data from North
American Land Data (NLDAS-2), US Census TIGER Roadways,
and ground-level PM2.5 sensing data sourced from EPA AirNow.
Our approach shows a 38.8% decrease in 5-frame average SSIM
error compared to existing modern deep learning architectures
utilizing remote-sensing data, satellite imagery, and ground-level
data for PM2.5 prediction.

I. INTRODUCTION

Industrialization and urbanization worldwide are causing an

influx of air pollution, which in turn is leading to negative im-

pacts on human health, deforestation, and habitat destruction.

The trend to move towards urban cities and Central Business

Districts, particularly in developing countries, is leading to

record-breaking levels of PM2.5 year after year [Yang et al.,

2018]. In fact, according to Zhou et al. [2017], over the past

decade, the number of deaths caused by the harmful effects

of ambient PM2.5 have increased by 23%. PM2.5’s ability to

travel deep into human respiratory tracts can cause premature

death to those with pre-existing heart and lung conditions. Its

effects on human health transcend across age groups and can

worsen diseases such as COPD, asthma, pulmonary fibrosis,

and pneumonia [Xing et al., 2016].

Our examination of PM2.5 at the hourly level allows us to

understand the global issue at its source and predict future

patterns to be able to form a solution before the situation

aggravates. Our paper relies on a model architecture that

utilizes deep learning methodology to predict PM2.5 both

spatially and temporally (spatial-temporal). Using a model

capable of identifying both spatial and temporal patterns, we

can capture how PM2.5 moves across a geographic region as

well as how it contrasts with data from years prior.

Our predictive performance is set apart from traditional

techniques because we utilize multisource big data from

ground-level sites, atmospheric remote sensing information,

and robust satellite imagery of air pollution and meteorological

features. Our complex deep learning architecture applies the

state-of-the-art Transformer architecture with Multi Head At-

tention in conjunction with Convolution to learn time-invariant

features across gridded data.

The ConvTransformer architecture utilizes various datasets

of time-series images. The ConvTransformer is fed video-

like inputs which represent various input features of our

dataset, including satellite imagery, remote-sensing data, and

ground-level interpolated data masks over time and space.

Fundamentally, the ConvTransformer architecture extends the

Transformer architecture with the Convolution layer. We rely

on the following equation to perform 2D Convolution:

O =
∑
i

∑
j

I(i, j) ·K(x− i, y − j) +B

where O is representative of an output feature map, I is the

input feature map, K is the kernel, i is the height of the input

channel, j is width of the input channel, and B is bias. We pass

our output feature map into the activation function, Rectified

Linear Unit (ReLU).

f(x) = max(0, x)

ReLU is a piecewise activation function that has a linear

relationship with the data when the values are positive, and

always zero when the values are negative. RELU prevents

issues with vanishing gradient descent and is computationally

efficient, which suits it better than other activation functions

such as the sigmoid or hyperbolic tangent.

After performing 2D Convolution on the data, we can

generate 2D tensors of the input as layers in our model. We

then implement the Transformer layer into our model which
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is primarily characterized by Multi Head Self Attention. The

Transformer architecture is a retentive model which utilizes

the Attention mechanism to learn patterns across time-series

data effectively [Vaswani et al., 2017]. Transformers parse the

data at once and have an attention mechanism that gives us

context about each position in the data. One upside to the

Transformer model compared to its predecessors is its ability

to gather information quickly about each part of the sequence

and perform operations in parallel due to the multi-headed

nature of the Attention mechanism [Medsker and Jain, 2001,

Hochreiter and Schmidhuber, 1997].

The Multi-Head Attention Mechanism relies on several key

equations to be able to operate and quickly understand our

input sequence with the ”attention” identifiers. The layer be-

gins by taking our input sequence and multiplying specifically

learned weight matrices to obtain the Queries (Q), Keys (K),

and Values (V) vectors. We then split up these vectors into

different heads, where each head contains a Query, Key, and

Value and the model contains n number of heads. Each head in

our Multi-Head Attention layer is assigned an attention score

which is a representation of how similar the query and key

in the head are. We use the following equation to compute

Attention scores:

Ai = softmax

(
QiK

T
i√

dk

)
,

where Ai is the attention score for query-key pair i, Qi

denotes query i, Ki denotes key i, and dk denotes the

dimensionality of the key vector.

We use this attention scores to generate a weighted sum

between the attention scores and the projected values of each

head. It is denoted using the following equation:

Oi = AiVi

We finally then model the linear relationship between each

head, and multiply the weighted sum with a matrix of model

weight and add a bias term. This completed sum is the Multi

Head Attention output:

O = [O1, O2, . . . , Oh]WO + bO

II. METHODOLOGY

To predict PM2.5 at the hourly level for the urban area of

Los Angeles, we rely on various remote sensing instruments

and data sets sourced by NASA, the European Space Agency,

and the Environmental Protection Agency. We utilize remote-

sensing air pollution, roadway outlines, ground-based air pol-

lution, atmospheric air pollution satellite imagery, and ground-

based meteorological gridded data in our ConvTransformer

architecture.

Our Los Angeles County study area falls within a 70 km by

70 km area, between the latitudes of 33.5◦N − 34.5◦N and

longitudes of 117.5◦W − 118.75◦W . Figure 1 describes the

geographic bounds of LA County along with the locations of

Fig. 1: Ground-level Meteorological and Air Pollution Site

Locations shown as red markers.

the ground-based PM2.5 and meteorological sensors used as

ground-truth labels for prediction.

Los Angeles typically demonstrates a Mediterranean climate

pattern, but due to recent cycles of rainfall and dry spells,

the climate has adapted to become a large source of wildfire.

In particular, multiple parts of California experienced heavy

wildfire seasons during the year 2020. Wildfire smoke data

demonstrates a direct correlation with PM2.5, making it very

useful as an incorporation to our model. One-third of total

atmospheric emissions are attributed to wildfire smoke emis-

sions, and approximately 90% of the emissions from wildfires

are fine particles like PM2.5 [Vedal and Dutton, 2006].

By combining direct PM2.5 historical data and indirect

data-characterizing factors that are associated with PM2.5, our

remote-sensing and ground-based data forms a comprehensive

approach to the hourly prediction of PM2.5. Air pollution

cannot be effectively linearly predicted using a statistical ap-

proach because of the way it evolves and changes from various

environmental factors [Rosenlund et al., 2008]. Instead, we

provide the ConvTransformer architecture with data to deduce

how the environment and topographical features affect patterns

of PM2.5 spatiotemporally in Los Angeles county. The various

remote-sensing instruments are recorded at differing sea levels,

urban structures, and topographies, thus providing our model

with robust multifaceted information.

A. Dataset

Our remote sensing and ground-based inputs were geo-

graphically bounded to the 70km x 70km area of Los Angeles

County. We utilized three years of hourly data from January

1, 2018 to December 31, 2020. We collected 26304 samples

corresponding to 24 hourly samples for the 1096 days of data

from January 1, 2018 to December 31, 2020.
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To add definition to our prediction model, we utilize the

TIGER roadways shapefile which outlines all of the major

highways and roads in LA County. The US Census provides

the TIGER dataset in shapefiles for users to visualize traffic-

and ground-based data. We use it in our model to explore

the dispersion and transition of PM2.5 across LA County

[McCormack and Blaine, 1990].

For the ground-based meteorological data input to our

model, we utilized the gridMET meteorological data source

which provides climate variables that are mapped onto a geo-

graphic grid with climatically-aided interpolation [Abatzoglou,

2013]. gridMET has several bands applicable to our prediction

model including precipitation accumulation, which can help us

understand how dry the climate is and model the relationship

between PM2.5 before and after rainfall. Another important

variable obtained from gridMET is wind speed, which is useful

when understanding how a wildfire moves and spreads across

our geographic region. We also use the wind direction band

from the gridMET data source, which provides information

regarding the directionality and movement of future PM2.5

patterns. A visualization of these input features is described

in Figure 2.

In our predictive model, we incorporated the NASA MODIS

Multi-Angle Implementation of Atmospheric Correction (MA-

IAC) which is a remote imaging spectrometer data source.

From this source, we utilized the Aerosol Optical Depth

(AOD), which quantifies how atmospheric pollutants and air

pollutants like PM2.5 block the transmission of light. It

explains how particles move around in the atmosphere, and

how their dispersion impacts solar radiation. AOD is measured

using wavelengths of light, and it has demonstrated a very high

and direct correlation with ambient air pollution. The AOD

used in our ConvTransformer model has a wavelength of 0.47

μm and it provides a spatial resolution of 1 km/pixel for an

area of 1200km by 1200km.

We also utilized the Sentinel 5-P satellite from the European

Space Agency (ESA) which has the TROPOMI instrument.

The satellite operates using a heliosynchronous orbit, which

means that upon each orbit the satellite passes through the

same location at the same local time. The Sentinel-5P Satellite

transmits all of its data to the ground-based station in real-time

through X-band frequency, and it is made publicly available

through the Copernicus program. The TROPOMI instrument

of the Sentinel 5-P satellite gives us insight into many different

atmospheric measurements such as ozone, nitrogen dioxide,

sulfur dioxide, methane, formaldehyde, carbon monoxide,

aerosols, and ultraviolet radiation. These atmospheric measure-

ments typically affect the creation of PM2.5 and they usually

serve as the precursor to the air PM2.5. We find that products

such as nitrogen dioxide, methane, carbon monoxide, etc. can

combust to form the components of PM2.5. TROPOMI has a

high spatial resolution of 7km x 3.5km per pixel.

To understand wildfires and heat we use two remote sensing

instruments: NASA MODIS and MERRA-2. NASA MODIS

provides us with the Fire Radiative Power (FRP) band which

measures the thermal energy released by fires. As a remote

Fig. 2: Sample hourly gridMET ground-level gridded data in

Los Angeles County. (a). Wind direction, (b). Wind speed, (c).

Precipitation

sensing instrument, the FRP band from MODIS tells us exactly

how intense a wildfire is and its geographic area covered. FRP

obtains a metric that cannot be measured using a ground-

based sensor, and it can be also useful in the prediction of

future wildfires. Once we can detect where an active wildfire

is in progress we can conclude that the levels of PM2.5

are going to change and spread. Wildfire smoke emissions

include the incomplete combustion of vegetation, trees, and

organic matter which are forms of PM2.5. Smoke acts as a

transportation system to allow the PM2.5 to spread over an

area, through an analysis of where a fire is (FRP) and the

wind velocity (gridMET) we gain a complex understanding of

PM2.5 behavior. FRP is measured at a resolution of 1km x

1km per pixel and is useful for at looking how a fire moves

on a large scale. MODIS FRP has a frequent orbit and is

especially useful when it comes to something as dynamic as

wildfires. FRP measures in the thermal infrared wavelength

spectrum and it uses light in the range of 2070 μm to 3200

μm.

Aside from remote sensing images of wildfires, we can uti-

lize the NASA MERRA-2 remote sensing satellite to observe

heat features that are correlated with wildfires and PM2.5.

From MERRA-2 we found that the Planetary Boundary Layer

(PBL) height, surface air temperature, and surface exchange

coefficient for heat would aide in our analysis. Images of the

PBL Height give us a metric to quantify the distance between

ground level and the lowest point of the atmosphere, and the

lowest point of the atmosphere is constantly changing. The

PBL is impacted by weather conditions such as solar radiation

and wind patterns, and its size is depend on current climate

patterns [Guo et al., 2021]. We know that changing climate

patterns have a link with PM2.5, which fits PBL into our
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study. PBL can change from rainfall, and it is responsible for

transporting moisture from the air to the atmosphere. A high

PBL Height indicates that rainfall is about to come, which

we can use to explore PM2.5 before and after rainfall. PBL

Height also changes based on surface features, such as the

terrain being mountainous or flat and if the area is covered with

dense or sparse vegetation. PBL Height can range from several

kilometers to only 500 meters depending on conditions, and it

does correlate with fire and heat. Surface exchange coefficient

(CH ) defines the transfer of heat between land surface and the

overarching atmosphere. Learning about how heat energy is

transferred between these two areas is an auxiliary to wildfires

and radiation, and we can observe that higher CH result

in wildfire occurrences which have correlations with PM2.5

[Chen and Zhang, 2009].

Figure 3 describes an overview of the various global remote-

sensing data and satellite imagery used within this model.

Fig. 3: ConvTransformer Input Features. (a). gridMET input

features, (b). TROPOMI Satellite Imagery, (c). TIGER LA

County Roadways Shapefile, (d). Sentinel-2 RGB Satellite

Imagery, (e). MERRA-2 Gridded Fire Features, (f). NASA

MAIAC MODIS AOD Remote-Sensing Data

Using the EPA Airnow API from the California Air Re-

sources Board AQMIS2 portal we can collect PM2.5 data at

the hourly level. There are 9 ground-based PM2.5 monitoring

sites in our defined Los Angeles region, and we use this data

to form hourly grids with the PM2.5 values demarcated on

each location of the sensor in a 40 x 40 grid.

We apply an advanced elevation population interpolation

technique described in our prior work to generate dense PM2.5

ground-level grids from sparse air pollution sensor measure-

ments [Muthukumar et al., 2022b]. We apply inverse distance

weighted interpolation with weights corresponding to values

in a static elevation and population map. The elevation map is

derived from digital elevation data sourced from the Sentinel

Hub API [Braun, 2021]. The population map is sourced from

the Global Human Settlement Layer accessed through the EO

Browser via Sentinel Hub [Pesaresi et al., 2016].

To validate our model’s performance, we evaluate our

PM2.5 predictions against sites with over 95% of hourly

validated data from the 3 years of our dataset length. In total,

we find that all 9 sensors in Los Angeles can be used for

validation purposes.

Fig. 4: Visualization of input filters for our ConvTransformer

model and the bundling method applied. One sample consists

of 24 frames, where the label sample is staggered 1 frame

ahead of the input feature sample

B. Model Architecture

To use our ConvTransformer architecture, we shaped the

input data into a five-dimensional tensor with dimensions

(sample, frame, row, column, filter). A visualization of the

ConvTransformer architecture is shown in Figure 4.

We downsampled the remote sensing satellite imagery data

sets to a 40-by-40 pixel resolution, corresponding to a 40-

row by the 40-column array to put into the 5D tensor. The

row and column parameters of the 5D tensor for our remote-

sensing imagery are defined as the 2D image, and the filter is

the RGB value of the image.

Our ground-based air pollution sensor data was mapped

onto a 40-by-40 pixel grid with the corresponding latitude &

longitude of each monitoring site represented as a point on the

grid.

For our 5D tensor, we bundled our input frames into smaller

samples, where 24 consecutive frames were considered to be

a part of one sample and each frame is representative of a

single timestep in our hourly data frequency. One entire bundle

represents an entire day’s worth of data, and we staggered the

hours used in our bundle so that the data remain continuous.

For example, bundle 1 contains hours 1-24, but bundle 2

contains hours 2-25.

We have samples for 1096 days (3 years) and 24 data points

each day, which gives us 26,304 images to use in our model.

When we construct our 5D tensor, we obtain the shape of

(26,304, 24, 40, 40, 10) where 26,304 is the amount of data, 24

is the size of each bundle, 40 x 40 is the size of each frame and

10 is the number of filters. The 10 filters we use in our tensor
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include one filter for the MAIAC MODIS AOD imagery, three

filters for the MERRA-2 fire features (PBL height, surface

temperature, and surface exchange coefficient for heat), 1 filter

for the MODIS FRP imagery, three filters for the TROPOMI

data of air pollutants (nitrogen dioxide, carbon monoxide, and

methane), one filter for gridMET meteorological data, and one

filter for the ground-based PM2.5 sensor data

For the model implementation, we started by designing

a custom ConvTransformer layer from the Keras library.

The general structure is inherited from tf.keras.layers.Layer

module, which is then initialized to perform the convolution

operation on our input followed by Multi-Head Attention

and normalization. We created two custom ConvTransformer

layers with key dimensions of 15 and 30, and heads of 3 and 6

respectively. The Transformer layers help us identify broader

interactions between different parts of the input. After that,

we created two other layers and applied 3D convolution to

the data, which are intended to capture local patterns in our

data. Our Conv3D layers are directly imported from the Keras

library, and the parameters are set to match our 10 filters. To

recap we have the following layers in our model:

1. ConvTransfomerLayer(k_dim = 15, head = 3)
2. ConvTransfomerLayer(k_dim = 30, head = 6)
3. Conv3D(filters= 10, activation=’relu’)
4. Conv3D(filters= 10, activation=’relu’)

III. RESULTS

Our model predicts hourly PM2.5 within LA County in units

of micrograms per cubic meter ( μg
m3 ) using 24 prior frames to

predict 24 future frames using multisource ground-level sensor

data, satellite imagery, meteorological features, remote-sensing

wildfire data, and atmospheric air pollution derived features

such as Aerosol Optical Depth (AOD). We use 26304 samples

of hourly data from January 1 2018 to November 30 2020 as

training data and evaluate our prediction on a test dataset of

1320 samples (24 samples for 55 days) from November 6 2020

to December 31, 2020.

We used the Root Mean Square Error (RMSE) and Nor-

malized Root Mean Square Error (NRMSE) error. RMSE and

NRMSE are calculated as

RMSE =

√√√√ n∑
i=1

(ŷi − yi)2

n
; NRMSE =

RMSE

ȳ

where n is the number of observations, ŷ is the predicted value,

y is the ground truth, and ȳ is the mean of the test data.

We also used the Structural Similarity Index Measurement

(SSIM) metrics to qualitatively assess the model performance.

SSIM is an effective metric applied in image processing to

quantify general similarities in visual features. SSIM values

range from 0.0 to 1.0 where an SSIM score of 1.0 between

two images implies they are visually identical. For a ground

truth pixel value p and predicted value p̂, the SSIM of a pixel

is

SSIM(p, p̂) =
2μpμp̂ + c1

(μ2
p + μ2

p̂ + c1)σ2
p + σ2

p̂ + c2
,

Fig. 5: Visualization of first five frames of ConvTransformer

predictions. Left column is predicted PM2.5 frame, right

column is ground-truth PM2.5 data. SSIM values per frame

are reported above each row.

where c1 and c2 are constants relating to the relative noise

of an image [Brunet et al., 2011]. For the entire image I , the

SSIM score is defined as

SSIM(I) =
∑
p∈I

2μpμp̂ + c1
(μ2

p + μ2
p̂ + c1)σ2

p + σ2
p̂ + c2

.
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Fig. 6: Scatterplot visualizing NRMSE values mapped per EPA

Airnow Site Monitoring Station along with NRMSE averaged

across all sites

To optimize the values of our model parameters we used

the Adam Optimizer, a variant of Stochastic Gradient Descent.

Adam performs well on image-classification tasks and is an

adaptive gradient algorithm that tunes the learning rate per

parameter.

A. ConvTransformer PM2.5 Hourly Prediction Results
In this section, we explore the results obtained from our

ConvTransformer designed for hourly prediction of PM2.5 in

Los Angeles County both spatially and temporally. Table I

describes location-based NRMSE metrics for each ground-

level PM2.5 site monitoring station. Figure 6 provides a

visualization of per-site NRMSE values against the NRMSE

calculate across all sites.

Sensor Location NRMSE

Airnow Site 1 0.041967
Airnow Site 2 0.004857
Airnow Site 3 0.021533
Airnow Site 4 0.010322
Airnow Site 5 0.006353
Airnow Site 6 0.006146
Airnow Site 7 0.039644
Airnow Site 8 0.004643
Airnow Site 9 0.035833

TABLE I: NRMSE error values averaged over 24 frame

bundles of test set for each sensor location in Los Angeles

To quantify a more precise similarity measure between our

ground truth and predicted values, we have calculated the

SSIM values of 5 predicted frames from our ConvTransformer.

Figure 5 describes a visualization of the first five frames of

the ConvTransformer test set, where the left column denotes

the predictions and the right column denotes the ground truth

values. Table II describes the first five frames’ SSIM values

between the predicted and ground truth data.

IV. CONCLUSION

In our spatiotemporal study, we leveraged modern deep

learning methods to achieve precise hourly predictions of

Fig. 7: SSIM values visualized per frame for ConvLSTM

(black), MeteoGCN-ConvLSTM (red), and our ConvTrans-

former (blue)

Frame SSIM

Frame 1 0.85
Frame 2 0.92
Frame 3 0.91
Frame 4 0.92
Frame 5 0.88

TABLE II: SSIM values over first five frames of test set for

ConvTransformer predictions compared against ground truth

PM2.5 across our defined geographical region of Los Angeles

County. Our approach contained a rich array of data sources in-

cluding ground-based meteorological and sensor data, remote-

sensing satellite instruments, and wildfire/heat data.

Our model brings in the best of both worlds by using a

Convolutional Neural Network to get the most out of our

spatial data and retain the information using the long-term

dependency power of Transformers. We incorporated state-

of-the-art machine learning techniques to abstract information

from ground-based and remote data sources including US Cen-

sus TIGER roadway outlines, ground-based air pollution data,

gridded ground-based meteorological data, satellite images of

Nitrogen Dioxide, Methane, and Carbon Monoxide; AOD,

FRP, PBL Height, Surface Temperature, and Surface Exchange

Coefficient of Heat from NASA remote-sensing instruments.

First Five Frame SSIM Scores
Frame

Model 1 2 3 4 5

ConvTransformer 0.85 0.92 0.91 0.92 0.88

ConvLSTM (ICDATA ’20) 0.77 0.7 0.63 0.56 0.51

MeteoGCN-ConvLSTM (CSCI ’20) 0.93 0.88 0.84 0.79 0.71

TABLE III: Testing set first 5 frame SSIM comparison of

ConvTransformer (ours), ConvLSTM (presented at ICDATA

20’) and ConvLSTM with Meteorological GCN (presented at

CSCI ’20)
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The ConvTransformer predicts PM2.5 hourly over Los

Angeles County but can be altered to fit any geographic

region across the globe. To evaluate our ConvTransformer, we

compute the NRMSE and SSIM values of each sensor loca-

tion/frame respectively. Upon comparison with our previous

deep learning predictive algorithms namely the CNN-LSTM

with GCN, described in Muthukumar et al. [2020c], we find

that the ConvTransformer can demonstrate a sharp increase in

performance. Initially, the ConvTransformer exhibits a pattern

of requiring a greater amount of frames to effectively predict

PM2.5 spatiotemporal patterns in the dataset, but its retention

levels outperform our other models utilizing the ConvLSTM

architecture by 0.164 SSIM on average [Cocom et al., 2020,

Muthukumar et al., 2021b,a, 2020a, Nagrecha et al., 2020,

Muthukumar et al., 2022a,b]. Table III describes the com-

parison of SSIM values of the first five frames from the

testing set for the ConvTransformer model, our prior work on

ConvLSTM models presented at ICDATA ’20, and our prior

research on ConvLSTM with Meteorological Graph Convolu-

tional Network (GCN) presented at CSCI ’20 [Muthukumar

et al., 2020b,a]. Figure 7 describes a visualization of SSIM

performance of ConvTransformer against our baseline models.

Our results show that the ConvTransformer has a 71.6%

decrease in 5-frame average SSIM error compared to the

ConvLSTM model and a 38.8% decrease compared to the

MeteoGCN-ConvLSTM model.

V. FUTURE WORK

We would like to expand the set of ground-level PM2.5

site monitoring stations by including community maintained

sensors while accounting for data uncertainty under error.

Additionally, we hope to scale our model to multiple cities

worldwide to better understand ambient air pollution at the

global scale.

Our current ConvTransformer model predicts PM2.5 frames

at a 40-by-40 pixel resolution, and we hope to increase this

resolution by upscaling input features in the near future.

By training on a higher resolution of data, our model will

command more granularity in its predictions which in turn

allow us to better understand hourly PM2.5 patterns in Los

Angeles and other regions around the world.

Ambient air pollution is affected by many factors and our

data sets can be expanded upon to provide a more robust model

of authentic geophysical patterns in our study area. We seek

to model the effects of commercial and residential pollution

on PM2.5 and identify potential sub regions of focus within

our study area. Ground-level PM2.5 also plays a major role

in many respiratory diseases such as COPD, emphysema, and

asthma which can be included in our predictive model as a

downstream task to forecast public health risks and outbreaks.
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