
Tales From the Past: Adapting App Repositories to
App Store Dynamics

Michael Stach1∗, Marc Schickler2, Manfred Reichert2, Rüdiger Pryss1
1Institute of Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany

2Institute of Databases and Information Systems, Ulm University, Ulm, Germany

michael.stach@uni-wuerzburg.de, marc.schickler@uni-ulm.de, manfred.reichert@uni-ulm.de, ruediger.pryss@uni-wuerzburg.de

Abstract—The pervasiveness of smartphones in daily life has
enabled the transformation of healthcare services into digital ser-
vices, often offered as mobile apps to make them more accessible
to the general public. The steady increase of apps in the app
stores, in turn, led to the creation of app repositories to help end
users, physicians, therapists, and healthcare providers find high-
quality apps based on expert app ratings. However, the validity
of these ratings is linked to a specific app version. In this paper,
we aim to describe the problems of current app repositories
and present an approach to address these shortcomings. More
specifically, our approach is able to periodically monitor the two
major proprietary app stores and react to upcoming changes.
We furthermore present a mechanism to extract additional
information from Android apps and to automate the latter
procedure. Finally, our paper aims to stimulate discussion on
what additional tools app researchers need to better study app
quality and execution.

Index Terms—mHealth, App Repository, Rating, App Store,
Play Store, Android

I. INTRODUCTION

The transformation of healthcare, and with it the provision

and integration of new digital services, has advanced rapidly in

recent years. In order to make health services accessible to the

largest possible amount of the population, these services are

being developed in particular as mobile applications (apps) for

smartphones. Due to the high prevalence of smartphones and

the integration into people’s daily lives, apps are increasingly

used to collecting data for research or patient monitoring, to

providing educational content for patients, and have also been

used for therapeutic applications.

The increasing amount of apps in the various app stores,

however, complicates the selection and evaluation of adequate

healthcare services for end users as well as physicians, thera-

pists, and healthcare providers. To address this ever-increasing

problem, a variety of review platforms for healthcare apps have

emerged in recent years (e.g., [1], [2]). There also are efforts

by large associations to develop their own standards for mobile

health app repositories and mHealth data representations [3].

Most app repositories provide independent evaluations or rat-

ings of the content quality of apps prepared by researchers and

other experts. For the ratings, standardized instruments such

as ENLIGHT [4] or MARS [5], which haven been translated

in various languages [6] and adapted to variations for different

target groups [7], are often used.

While these standardized instruments have proven them-

selves in the evaluation of apps, they are only valid for a

specific version. Since software is an evolutionary construct, a

rating is only meaningful for a certain period of time. Conse-

quently, app repositories must take the life cycle of the rated

apps into account in order to offer relevant recommendations

over a longer period of time.

To illustrate this, we tested the availability of the publicly

listed apps in our own app repository Mobile Health App
Database (MHAD) [2]. To be more precise, we requested the

app stores (i.e., either Google Play Store or Apple App Store)

for 1083 apps that also possessed a store link and checked

the returning HTTP status codes. We then excluded all apps

without information about the time of the rating (n=325), to

further check if recent ratings are also affected. The result

showed that 41% of all apps were no longer available and thus

neither the app rating could be verified nor other information

about the app could be retrieved (see Figure 1). It also showed

that this phenomenon does not only affect older ratings.

Looking at existing platforms and including the experience

we made with MHAD [8]–[13], the current platforms are

inadequately tailored to the highly volatile app market. To ade-

quately support patients, researchers and healthcare providers,

future platforms must offer solutions that address the following

three shortcomings:

1) App store dynamics are not adequately reflected or

processed and made available to researchers and raters.

Changes in the app store (i.e., modification or deletion of

apps and changes in app permissions or other metadata)

must be monitored and properly reacted to.

2) The absence of historical app data disconnects the

temporal relationship between app ratings and the app’s

lifecycle. The state of all data related to an app (i.e.,

metadata, App Store data, and installation package)

should be archived and made accessible.

3) App metadata is not entirely made available through

the app stores, resulting in incomplete or missing data.

This data should be made accessible for researchers and

future developments.

In this paper, we describe the current challenges of mobile

health app platforms using the Google Play Store as an

example and want to emphasize the necessity of app store

1342

2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE)

979-8-3503-2759-5/23/$31.00 ©2023 IEEE
DOI 10.1109/CSCE60160.2023.00225

Fig. 1. Availability of apps with a valid link to either the Google Play Store or the Apple App Store in the Mobile Health App Database (n=758). The year
refers to the time of the rating. Availability was checked using an HTTP request to the corresponding app store.

observation mechanisms to enable app repositories to react

to changes in the app store. Furthermore, we present an

approach to extract metadata from apps rather than from app

stores and discuss the benefits of including such data in app

repositories. Finally, we want to enhance the current state of

app repositories with our contribution and start a discussion

on future developments in mHealth app research.

II. RELATED WORK

The evaluation of the quality of mHealth apps has been the

content of various research papers for several years. Problems

of the quality of mHealth apps have already been discussed

in [14]. In terms of distribution, [14] and [15] describe the

problem of large app stores allowing anyone to develop an

app and listing it in the ”medical” or ”health and wellness”

category. This implies two problems: On the one hand, the

durability of the app is not necessarily given, and on the other

hand, it requires expert reviews to find an effective health

app in the multitude of apps. How such a review process

can be designed was described in [16]. These methods were

later challenged in [15], as the commonly used tools are said

to be inadequate for assessing the quality of mHealth apps.

In addition, the authors emphasized that systematic reviews

can only be replicated for a short period of time, and this is,

according to [15], also a problem with the current research

approach.

Regarding the analysis of app store data, [17] describe the

many methods used for feature analysis in their extensive

survey. Among the methods used were the analysis of manifest

files, which allowed app information such as permissions to

be obtained. [18] also describes how the authors used Android

applications to classify the latter based on the contents of their

manifest file. An extensive overview and description of the

contents of the manifest file is given in [19].

In addition, [20] compared the app permissions, which are

also included in the manifest file, with the privacy policies

of these apps. It was found that, especially in the Google

Play Store, more permissions were requested than stated in

the privacy policies. This was the case even though Google

itself issues guidelines on the use of system permissions for

its app store [21]. This worrying trend again shows the need

for tools that can transparently show users and raters the actual

permissions of an application.

In their attempt to measure the dynamics of the both large

app stores, the authors of [22] also showed that privacy

policies in particular are subject to frequent changes in the

App Store. The authors of [23] attempted to quantify these

frequent changes by calculating the half-life for apps. They

also concluded that the mHealth environment is extremely

volatile, and this fact, in turn, makes it difficult for consumers

and clinicians to find suitable apps.

III. TECHNICAL CHALLENGES

The reliable provision of app data is a challenging task.

Especially in app research or for retrospective evaluation of

app ratings, it is important that all necessary data is provided.

If the app rating is up-to-date, plenty of information can be

extracted from the app store. However, if this is no longer

the case, it is difficult to obtain historical (meta) data for

an app release. Metadata about apps are, for example, the

version number of the app, app category, average star rating,

app description, but also technical metadata about the app

itself such as the Android version required to install the

app, permissions or broadcast access. However, the technical

metadata cannot be retrieved from the app stores without

additional effort, since most proprietary services do not offer

a publicly accessible interface.

Unlike the Apple App Store, the Google Play Store does

not offer an official interface, so information must be extracted

from the website through a process known as scraping. Scrap-

ing means that a program takes elements from a website (e.g.,

the textual app description, the app logo as an image, the app

category or suggested similar apps) based on predefined rules.

Since this process is extremely prone to errors, many technical

challenges are related to the scraping mechanism.

As Apple’s App Store offers several interfaces for reliably

retrieving app information, the following sections will focus on

the Google Play Store. The latter is known as a black box that

is constantly changing [24]. A/B tests, for example, are held

to improve the user experience, which can lead to different

search results: Apps are displayed in a different order or the

results are limited to 30 apps that Google has selected to show

when searching for specific terms. These constant changes

complicate the extraction of information, as the extraction

rules have to be constantly adapted and the program code

changed. This issue, in turn, complicates the provision of a

1343

reliable and available search feature, since the execution of

new queries is not possible during the downtime. Furthermore,

too many requests to the store websites can lead to an IP-based

ban. These limitations of automated accessibility require the

creation of an in-between solution to ensure accessibility to

information without depending on the availability in the app

stores.

Another problem is becoming visible due to current changes

to the Google Play Store: Metadata is only displayed in a

limited way (i.e., shortened or potentially not at all). Thus,

any scraper-based solutions will only be able to offer data of

poorer quality. Such a change was implemented in 2022, when

Google included its so-called Data Safety feature [25], which

on the one hand required developers to provide a summary

of the collected and shared data, but on the other hand did

not verify this information and delegate the responsibility

for validity to the developers [26]. Shortly thereafter, Google

removed the self-generated app permission information from

the Play Store, so that no reliable information about interface

access was available anymore. Though Google rolled back this

change due to public pressure not long after, this, however,

again illustrates that changes to the app stores can limit data

availability at any time.

Interestingly, the availability of app permission metadata is

an important issue in that the Google Play Store, for example,

replaces the actual permission identifiers with more easily

accessible descriptions. Thus, providing app repositories with

the complete list requires a new different approach to obtain

these data. To fill this technological gap, we propose to use

the Android Package file (APK)1 of an app to retrieve the

required permissions in the technical description documents

of an app. To be more precise, in the case of Android,

the information is stored in the so-called AndroidManifest
XML file. This file contains, besides the required permissions,

other information that is of interest to app research: Since

many studies in the field of mHealth are designed with the

”bring you own device” approach, it must be ensured that

applications also work on different devices. Therefore, app

repositories should offer the possibility to show the users only

apps for their devices. The information needed to accomplish

this can also be found in the AndroidManifest. Furthermore,

the AndroidManifest also includes information about retrieving

shared device information (i.e., broadcasts), for example, to

react to device reboots.

However, both app stores do not offer the option of down-

loading an app directly from the website. For Apple, this is

understandable, as it currently does not allow sideloading (i.e.,

installing apps outside the official app store) [27]. Android,

however, has already supported sideloading for years and only

allows downloading apps via the store app on the smartphone,

or via Google’s interfaces that require authentication. In or-

der to provide app repositories with additional information,

this interface must be made accessible programmatically and

expanded in a scaling manner.

1APK is the file format that Android uses to distribute and install apps.

Fig. 2. Conceptual overview of the proposed approach to combine app store
metadata with app metadata extracted from the apps’ APK file.

IV. CONCEPT

To address the described challenges or, to be more precise,

to track changes in the app stores and align to the app life-

cycle, we combined the rich data retrieved with the scraper

with a novel approach to additionally store app packages as

well as their extracted metadata (see Figure 2). To accomplish

this, we have decomposed the procedure into individual units

of work. This increases interchangeability in case of app store

changes and simplifies scaling. Furthermore, decomposition

can be used to prevent IP-based blocking by allowing requests

to be sent from different servers. This technique can also be

used to bypass country-specific app store restrictions. A trade-

off of decomposition is the additional effort that must be spent

on orchestration. Since the individual steps can take several

seconds, the communication of the Request Handler with the

requesting parties is implemented asynchronously. This adds

additional overhead to manage the status of a request. Our

concept proposes the use of a Workflow Engine to take care of

these tasks. This technology also provides additional quality

assurance mechanisms such as retry on failure, exception

handling, and state monitoring with an audit function. We have

chosen Zeebe as the Workflow Engine, but these tasks can

also be handled by other workflow engines or technologies.

Furthermore, the modeled workflows can be easily extended,

for example, to notify applications, researchers, or evaluators

when changes occur.

App store data (i.e., app descriptions, user star ratings,

user reviews or app version) is collected either using the

Play Store scraper or App Store API worker. To be more

precise, we reused the same tools that were developed for

the MHAD platform, as they have proven themselves in the

field. Furthermore, additional configurations are possible via

the scraper, for example, to set the country of the store and

the language.

We extract information from the AndroidManifest to obtain

additional app data. However, the Google Play Store does not

provide a public interface to retrieve this information. Since

1344

Fig. 3. The proposed adaptations can be easily integrated into existing procedures (e.g., assessment process of the Mobile Health App Database [2]).

the manual workaround via a smartphone does not scale, we

developed an automatable APK Downloader based on the Java

application Raccoon. To do this, the APK Downloader requires

a Google account to request the non-public interfaces. Com-

parable to the process that runs on the Android smartphone,

the APK Downloader associates a custom device configuration

with the user account to download apps through the official

interface. The advantage of this approach is that you can create

different profiles and thus simulate (test) devices. Apps that are

not supported by this device (e.g., because the Android version

is too old) can consequently not be downloaded. The Workflow
Engine can subsequently react to this error via exception

handling.

Then, in a second step, the downloaded APK is extracted

and the AndroidManifest is parsed. An excerpt of the contents

of an AndroidManifest is shown in Figure 3. It contains, for ex-

ample, information about the requested permissions, the used

features of the smartphone or which broadcasts the app wants

to receive. Since the AndroidManifest is not stored in readable

form in the APK file, we use a tool called Android Asset
Packaging Tool (AAPT)2, which is developed and published

by Google, to output the AndroidManifest contents. Then the

content is parsed, stored in a structured format, and given a

correlation identifier to associate it with the APK file.

V. DISCUSSION

With this paper, we would like to not only present our

proposed approach to extending the current state of app

repositories, but rather to begin a discussion of the problems

of current approaches and the opportunities created by the

extensions presented. Therefore, we presented an approach that

describes how app search can be accomplished via scrapers

and extended using metadata about the app itself. We used

the AndroidManifest for the latter purpose, as it is currently

2https://developer.android.com/tools/aapt2

the only reliable source of technical metadata. In the future,

this information will be of increasing interest, since, for

example, the display behavior of notifications is controlled

via a permission request starting with Android 13 [28]. Future

systems can use this information to better assess whether apps

work reliably on users’ end devices and what device features

the apps use. Due to the many different Android distributions

available, inconsistencies in the execution of apps will occur

more frequently in the future and tools for verification - espe-

cially with regard to mHealth or apps that are used as scientific

instruments - will become more and more important [29].

Apparently, the quality assurance guidelines published by

Google [30] are not sufficient to ensure proper execution on

different devices [31]. Moreover, the extracted information

of the AndroidManifest can be used in the future for more

sophisticated tools like an automatic reliability assessment to

detect possible incompatibilities (i.e., simulate the execution

on a specific device), if this information is made available.

As already described, another problem of current ap-

proaches is the lack of tracking of changes in the app stores.

Our approach is designed as a workflow-based approach and

thus allows us to schedule and execute processes multiple

times. By repeatedly requesting the app stores, we can detect

changes and thereby generate higher-value insights such as

update frequency or correlation of download trends and rat-

ings. Tracking changes also enables the creation of a historical

dataset. Due to the lack of such an archive in the app stores,

only the current state is available at any given time. Since

apps are an evolutionary construct and are always changing,

ratings are only valid for a certain release. In order to be

able to retrospective evaluate these ratings, a historical data

set that includes the date of the rating is needed. This is of

scientific interest in that ratings are also often published in

research papers and are difficult to verify without a historical

data set [15].

In addition, we have designed our approach to be open so

1345

that it can be easily integrated into existing rating processes.

We have demonstrated an example integration of the approach

into the MHAD rating process in Figure 3. Raters can, for

example, send a list of rated apps to the system for monitoring

and/or storing additional data. The latter will start a process

for all apps in the list and query the app stores periodically.

In case of a version change, all changes are saved and the app

is reported to the APK downloader. The meta information is

then unpacked and can be stored along with the app ratings.

Even though this example simulates the best case, app store

monitoring needs an approach that is robust to failure cases

and flexible for extensions. For this reason, we decided to use

a workflow engine, since we can easily configure both error

handling and workflow extensions with the bundled modeler.

A. Future Work

Our concept and implemented prototype constitutes the

basis of further work. On the one hand, based on MHAD [2],

it would provide the basis for app repositories that not only

offer a list of ratings, but can provide additional information

and insights through stronger integration with app stores.

Such a centralized platform could also be used to unify

ratings from different tools and languages (e.g., ENLIGHT [4],

MARS [5]–[7] or AQUA [32]). In the area of apps in health re-

search, papers and projects could also be found automatically,

for example, by searching and linking to interfaces of literature

management services such as SemanticScholar3. Furthermore,

integrating results from research projects on app compatibil-

ity [31] would help to make a compatibility statement for

execution on proposed devices. This could also increase the

acceptance of such services by the general public if users

could directly check whether this app works as expected on

their end device. In addition to the in-depth expert evaluation,

it would be possible to integrate tools for evaluating apps

that are tailored to end users in particular. Ultimately, such

an information hub for healthcare apps could enrich research

by gathering information to feed future AI-based systems to

discover new ways to find high-quality apps based on their

app store data. The latter is a major problem [33] [34] and

could be improved by automated evaluations.

B. Limitations

Even though the approach presented in this paper can obtain

data from the Apple App Store, an extraction through metadata

similar to the AndroidManifest on Android is currently not

possible. Furthermore, the approach to downloading Android

apps relies on private Google accounts and can potentially

be hampered by further security measures. In particular, if

Google would require a mandatory connection to a real device.

Also, Google requires a hardware configuration to download

apps, which is irretrievably linked to the Google account. The

compilation of appropriate configurations is complex, which

is why the selection of hardware configurations is currently

still limited. In addition, a legal classification of the data use

3https://www.semanticscholar.org/

is difficult, since the interpretation of a fair use of the data for

research varies.

VI. CONCLUSION

In this paper, we have described the shortcomings of current

app repositories that we have identified by looking at existing

platforms as well as through the experience of our own app

repository.

On the one hand, current approaches are not sufficiently

adapted to the lifecycle of apps. This means that changes in the

app store (e.g., updating or deleting an app) are not adequately

mapped. Furthermore, no historical data is provided by the

proprietary app stores, which is why a retrospective review

of ratings is not possible. In addition, not all app metadata

is made available through the app stores, so approaches are

needed to extract it.

Our presented approach aims to address these shortcomings

by enabling periodic monitoring of the app store. We also

presented an automated method for extracting app metadata

from the app itself. The extracted information can be used to

train future system to identify effective mHealth apps based

on app data in the app store. Finally, this paper aims to

stimulate discussion on whether app research needs new tools

and whether relying on data from the major app store operators

is future-proof.

REFERENCES

[1] S. Lagan, P. Aquino, M. R. Emerson, K. Fortuna, R. Walker,
and J. Torous, “Actionable health app evaluation: translating expert
frameworks into objective metrics,” npj Digital Medicine, vol. 3,
no. 1, p. 100, Jul. 2020. [Online]. Available: https://doi.org/10.1038/
s41746-020-00312-4

[2] M. Stach, R. Kraft, T. Probst, E.-M. Messner, Y. Terhorst,
H. Baumeister, M. Schickler, M. Reichert, L. B. Sander, and
R. Pryss, “Mobile Health App Database - A Repository for Quality
Ratings of mHealth Apps,” in 33rd IEEE CBMS International
Symposium on Computer-Based Medical Systems (CBMS). Rochester,
MN, USA: IEEE, Jul. 2020, pp. 427–432. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9183243/

[3] “IEEE standard for open mobile health data—representation of metadata,
sleep, and physical activity measures,” IEEE Std 1752.1-2021, pp. 1–24,
Sep. 2021.

[4] Baumel, Amit and others, “Enlight: A Comprehensive Quality and
Therapeutic Potential Evaluation Tool for Mobile and Web-Based
eHealth Interventions,” J Med Internet Res, vol. 19, no. 3, p. e82,
Mar. 2017. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/
28325712

[5] S. Stoyanov and others, “Mobile App Rating Scale: A New Tool for
Assessing the Quality of Health Mobile Apps,” JMIR mHealth and
uHealth, vol. 3, no. 1, p. e27, 2015, 00755.

[6] K. Yamamoto, M. Ito, M. Sakata, S. Koizumi, M. Hashisako, M. Sato,
S. R. Stoyanov, and T. A. Furukawa, “Japanese Version of the
Mobile App Rating Scale (MARS): Development and Validation,”
JMIR Mhealth Uhealth, vol. 10, no. 4, p. e33725, Apr. 2022. [Online].
Available: http://www.ncbi.nlm.nih.gov/pubmed/35197241

[7] S. R. Stoyanov, L. Hides, D. J. Kavanagh, and H. Wilson, “Development
and Validation of the User Version of the Mobile Application Rating
Scale (uMARS),” JMIR Mhealth Uhealth, vol. 4, no. 2, p. e72, Jun. 2016.
[Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/27287964

[8] A. A. Portenhauser, Y. Terhorst, D. Schultchen, L. B. Sander, M. D.
Denkinger, M. Stach, N. Waldherr, D. Dallmeier, H. Baumeister, and
E.-M. Messner, “Mobile Apps for Older Adults: Systematic Search
and Evaluation Within Online Stores,” JMIR Aging, vol. 4, no. 1, p.
e23313, Feb. 2021. [Online]. Available: http://www.ncbi.nlm.nih.gov/
pubmed/33605884

1346

[9] M. Muehlmann, A. Lienert, H. Muehlan, M. Stach, Y. Terhorst,
and E.-M. Messner, “Digitale Sexualaufklärung: Verfügbarkeit und
Evaluation mobiler deutschsprachiger Apps zur Förderung der sexuellen
Gesundheit,” Z Sex Forsch, vol. 34, no. 04, pp. 197–207, Jul. 2021.
[Online]. Available: https://doi.org/10.1055/a-1669-7626

[10] D. Schultchen, Y. Terhorst, T. Holderied, M. Stach, E.-M. Messner,
H. Baumeister, and L. B. Sander, “Stay Present with Your Phone:
A Systematic Review and Standardized Rating of Mindfulness
Apps in European App Stores,” International Journal of Behavioral
Medicine, vol. 28, no. 5, pp. 552–560, Oct. 2021. [Online]. Available:
https://doi.org/10.1007/s12529-020-09944-y

[11] L. S. Steubl, J. Reimann, L. Simon, Y. Terhorst, M. Stach,
H. Baumeister, L. B. Sander, and E.-M. Messner, “A systematic
quality rating of available mobile health apps for borderline
personality disorder,” Borderline Personality Disorder and Emotion
Dysregulation, vol. 9, no. 1, p. 17, Jun. 2022. [Online]. Available:
https://doi.org/10.1186/s40479-022-00186-w

[12] E.-M. Messner, N. Sturm, Y. Terhorst, L. B. Sander, D. Schultchen,
A. Portenhauser, S. Schmidbaur, M. Stach, J. Klaus, H. Baumeister, and
B. M. Walter, “Mobile Apps for the Management of Gastrointestinal
Diseases: Systematic Search and Evaluation Within App Stores,” J Med
Internet Res, vol. 24, no. 10, p. e37497, Oct. 2022. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/36197717

[13] L. Simon, J. Reimann, L. S. Steubl, M. Stach, K. Spiegelhalder,
L. B. Sander, H. Baumeister, E.-M. Messner, and Y. Terhorst, “Help
for insomnia from the app store? A standardized rating of mobile
health applications claiming to target insomnia,” Journal of Sleep
Research, vol. 32, no. 1, p. e13642, Feb. 2023. [Online]. Available:
https://doi.org/10.1111/jsr.13642

[14] Q. Grundy, “A review of the quality and impact of mobile health apps,”
Annual Review of Public Health, vol. 43, pp. 117–134, 2022, publisher:
Annual Reviews.

[15] Q. H. Grundy, Z. Wang, and L. A. Bero, “Challenges in assessing mobile
health app quality: a systematic review of prevalent and innovative
methods,” American journal of preventive medicine, vol. 51, no. 6, pp.
1051–1059, 2016, publisher: Elsevier.

[16] E. D. Boudreaux, M. E. Waring, R. B. Hayes, R. S. Sadasivam,
S. Mullen, and S. Pagoto, “Evaluating and selecting mobile health
apps: strategies for healthcare providers and healthcare organizations,”
Translational behavioral medicine, vol. 4, no. 4, pp. 363–371, 2014,
publisher: Oxford University Press.

[17] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, “A survey of app
store analysis for software engineering,” IEEE transactions on software
engineering, vol. 43, no. 9, pp. 817–847, 2016, publisher: IEEE.

[18] A. Shabtai, Y. Fledel, and Y. Elovici, “Automated static code analysis
for classifying android applications using machine learning,” in 2010
international conference on computational intelligence and security.
IEEE, 2010, pp. 329–333.

[19] A. K. Jha, S. Lee, and W. J. Lee, “Developer mistakes in writing
android manifests: An empirical study of configuration errors,” in
2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR). IEEE, 2017, pp. 25–36.

[20] B. Brumen, A. Zajc, and L. Bošnjak, “Permissions vs. Privacy Policies
of Apps in Google Play Store and Apple App Store,” in Information
Modelling and Knowledge Bases XXXIV. IOS Press, 2023, pp. 258–
275.

[21] Google, “Permissions and APIs that Access Sensitive Infor-
mation - Play Console Help,” May 2023. [Online]. Avail-
able: https://support.google.com/googleplay/android-developer/answer/
9888170?visit id=638211237760159048-3750078916&rd=1

[22] S. E. Stoeckl, E. Torres-Hernandez, E. Camacho, and J. Torous,
“Assessing the Dynamics of the Mental Health Apple and Android
App Marketplaces,” Journal of Technology in Behavioral Science, Jan.
2023. [Online]. Available: https://doi.org/10.1007/s41347-023-00300-x

[23] M. E. Larsen, J. Nicholas, and H. Christensen, “Quantifying App
Store Dynamics: Longitudinal Tracking of Mental Health Apps,” JMIR
Mhealth Uhealth, vol. 4, no. 3, p. e96, Aug. 2016. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/27507641

[24] T. Poell, D. Nieborg, and J. Van Dijck, “Platformisation,” Internet Policy
Review, vol. 8, no. 4, pp. 1–13, 2019, publisher: Berlin: Alexander von
Humboldt Institute for Internet and Society.

[25] S. Frey, “Get more information about your apps in Google Play,” Apr.
2022. [Online]. Available: https://blog.google/products/google-play/
data-safety/

[26] Google, “Provide information for Google Play’s Data safety section -
Play Console Help,” 2022. [Online]. Available: https://support.google.
com/googleplay/android-developer/answer/10787469

[27] M. Gurman, “Will Apple Allow Users to Install Third-Party App
Stores, Sideload in Europe? - Bloomberg,” Dec. 2022. [Online].
Available: https://www.bloomberg.com/news/articles/2022-12-13/
will-apple-allow-users-to-install-third-party-app-stores-sideload-in-europe

[28] Android Developers, “Behavior changes: Apps targeting Android 13
or higher | Android Developers,” May 2023. [Online]. Available:
https://developer.android.com/about/versions/13/behavior-changes-13

[29] A. González-Pérez, M. Matey-Sanz, C. Granell, and S. Casteleyn,
“Using mobile devices as scientific measurement instruments: Reliable
android task scheduling,” Pervasive and Mobile Computing, vol. 81,
p. 101550, 2022. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1574119222000074

[30] Android Developers, “Core app quality | App quality | Android
Developers,” May 2023. [Online]. Available: https://developer.android.
com/docs/quality-guidelines/core-app-quality

[31] M. Stach, F. Pflüger, M. Reichert, and R. Pryss, “LAMP: a
monitoring framework for mHealth application research,” Procedia
Computer Science, vol. 198, pp. 203–210, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050921024686

[32] T. O’Rourke, R. Pryss, W. Schlee, T. Probst, and others, “Development
of a multidimensional app-quality assessment tool for health-related apps
(AQUA),” Digital Psychology, vol. 1, no. 2, pp. 13–23, 2020.

[33] H. Wisniewski, G. Liu, P. Henson, A. Vaidyam, N. K. Hajratalli, J.-
P. Onnela, and J. Torous, “Understanding the quality, effectiveness and
attributes of top-rated smartphone health apps,” Evidence-based mental
health, vol. 22, no. 1, pp. 4–9, 2019, 00014.

[34] M. E. Larsen, K. Huckvale, J. Nicholas, J. Torous, L. Birrell, E. Li, and
B. Reda, “Using science to sell apps: evaluation of mental health app
store quality claims,” NPJ digital medicine, vol. 2, no. 1, pp. 1–6, 2019,
00043.

1347

