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Abstract— Biomedical images are frequently used in articles to 
illustrate medical concepts and highlight regions-of-interests 
(ROIs) by using annotation markers (pointers) such as different 
arrows, letters or symbols overlaid on figures. Also, in many cases 
multiple markers in the same image are often  pointing to different 
concepts relevant to the article. Hence, each image might be 
assigned with one or more concepts for multi-label classification 
and object detection based machine-learning tasks. This work 
reports such a  proof-of-concept (POC) experiment  by annotating 
ROIs and classifying (multi-label classification)  200 Chest CT  
images appeared in biomedical articles   with eleven (11) different  
concept (similar to UMLS)  categories  such as, ground-glass, 
bronchi, honeycomb, cyst,  nodules, etc.  For annotation, we use an 
online tool (Labelimg)   to annotate image ROIs with concepts 
based on the information content in associated captions. To 
demonstrate the feasibility of the POC, this study conducts 
experiments with different Convolutional Neural Networks 
(CNNs) and Vision Transformers (ViTs) using both transfer 
learning (fine-tuning) and training from scratch. We achieved 
encouraging results (around 70% micro average precision and 
recall accuracies) in a test set, whereas the dataset images are in 
very low resolution, non-uniform lighting conditions and with 
varied shapes and sizes. Overall, this study demonstrates the 
effectiveness of deep learning models in multi-label classification 
in medical images and establishes the feasibility and rationale of 
the POC. The ultimate goal of this work is to develop a large-scale 
concept detection framework towards building a visual ontology 
of images in biomedical articles.  

Keywords—biomedical concepts, classification, multilabel 
classification, image retrieval, evaluation 

 

I. INTRODUCTION  

 

Due to the ongoing progress in biomedical domain, a wide 

variety of users, such as patients, researchers, general 

practitioners, and clinicians often use  tools to search for 

relevant and actionable information   from biomedical literature 

to their individual needs.  It creates the need of literature-based 

informatics for managing the rapidly increasing volume of 

information in the biomedical domain [1]. For example, 

according to PubMed Central® (PMC), a free full-text archive 

of biomedical and life sciences journal literature at the U.S. 

National Institutes of Health's National Library of Medicine 

(NIH/NLM) alone contains more than 8 million articles with an 

average 3-5 figures   as of 2022 [2].  

 

    Due to the rapid pace of scientific discovery in medical 

domain, we are witnessing an exponential growth of biomedical 

literature for the past few decades. Hence, it is becoming 

increasingly difficult to search for information in the right place 

at the right time within large volumes of literature [3, 4].  Until 

now, little attention is devoted to the use of images in the 

articles, as the meaning of images cannot be understood by 

analyzing their content alone. In general, a system searching for 

images within a collection of biomedical articles commonly 

represents and retrieves them based on the collateral text, such 

as captions [5-7]. For example, a basic search in PMC will look 

at all image captions in the database and retrieve images related 

to the query topic. Until now, little attention is devoted to the 

use of images in the articles, as the meaning of images cannot 

be understood by analyzing their content alone. However, 

biomedical articles convey information using multiple and 

distinct modalities, including text and images. Also, the diverse 

modalities (e.g., X-ray, CT, MRI, US, etc.)  constitute an 

important source of anatomical and functional information for 

clinical purpose, research, and education. Given that, images 

are such a crucial source of information within the biomedical 

domain, using visual features for image classification and 

search has gained significant popularity during the past three 

decades [8].   

 

    Authors of biomedical articles often use arrows, pointers, and 

other annotations such as text labels overlaid on figures and 

illustrations in the biomedical articles to highlight significant 

areas as ROIs. 
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Figure 1: Example Chest CT image with associated 

caption [23] 
 

    These annotations are then referenced and correlated with 

concepts in the caption text or figure citations in the article text. 

The pointers/markers are good source of information to locate 

specific visual patterns as ROIs in the image [9]. For example, 

Fig. 1 shows different arrows/arrowheads pointing to 

honeycomb (hexagonal wax cells like structure) and bronchial  
(diffuse thickening of the airway walls giving the appearance 

of thick lines and rings throughout the lungs) and cyst patterns 

in a chest CT image (along with caption at the top)  as depicted  

in an  article “Idiopathic pulmonary fibrosis” in the Orphanet 

Journal of Rare Diseases [10].  These annotation markers (e.g., 

arrows) can assist in extracting relevant ROIs within the image 

that are likely to be highly relevant to the discussion in the 

article text. Image regions can then be annotated using 

biomedical concepts from extracted snippets of text in captions 

that might be further identified using existing textual 

ontologies, such as the Unified Medical Language System 

(UMLS) [11] or RadLex [12].  Such a resource could assist in 

reducing the semantic gap problem in image classification and 

retrieval [13].   

 

 
Figure 2: Example visual concept (ROIs) in the thoracic 

imaging glossary [12] 
 

However, these images are always in low-resolution compared 

to their clinical counterparts, in varying sizes and lightning 

conditions  and moreover the dataset is highly imbalanced 

where a few concept categories (patterns) occur more  

frequently compared to other less frequent ones. Hence, 

although currently smaller, the dataset still might be considered 

as a realistic set for evaluating medical image classification and 

retrieval techniques for images in biomedical articles. 
 

This work presents a proof-of-concept experiment by 

annotating ROIs and classifying 200 Computed 

tomography (CT) images of the chest, which appears in 

biomedical articles obtained through a large benchmark 

collection [14]. The images are classified into eleven (11) 

different concept (similar to UMLS) categories such as, ground 

glass, bronchi, honeycomb, cyst, nodules, etc.   The concept 

detection is considered here as a multi-label classification 

problem, which involves predicting zero or more concept 

labels/categories to each image instance. To demonstrate the 

utility, we trained several CNNs and ViTs based classifiers to 

automatically assign thoracic imaging concepts to image 

regions based solely on their appearance. Thus, our methods are 

capable of automatically mapping the appearance of visual 

entities within images to a limited set of concepts or terms as 

shown in Fig. 2, which are in the “imaging observation” (RID5) 

branch of the RadLex tree [12], included “ground-glass 

opacity” (RID28531), bronchiole (RID1298), cyst (RID3890), 

and “honeycomb” (RID35280), among others. We evaluated 

our methods in the small gold standard set of annotated image 

regions and descriptions with encouraging results, which are 

the first steps towards the creation of a visual ontology of 

biomedical imaging entities.  

 

II. MULTI LABEL CLASSIFCATION 

One of the most used capabilities of ML techniques in 

scientific literature is for classifying content, where each data 

instance or document is assigned to a class from the set of a 

priori known classes and the task may be divided into three 

domains, binary classification, multiclass classification, and 

multilabel classification. The   binary and multiclass 

classification approaches are well known and widely used in 

supervised ML, such as text categorization, sentiment and 

emotion recognition, image classification and object detection, 

etc. However, many of real life data sets (such as the image in 

Fig. 1) are too complex to impose the restriction of only one 

category or label for each data instance. The difference between 

multi-class and multi-label classification is that the classes are 

mutually exclusive for the first one, whereas multi-label 

classification or multi-output classification is a variant of 

the classification problem where multiple nonexclusive labels 

may be assigned to each instance. 

There are two main methods for tackling a multi-label 

classification problem [15]. The first kinds are problem 

transformation methods, which transform the multi-label 

problem into a set of binary classification problems so that 

those can be  handled using single-class classifiers. On the other 

hand, algorithm adaptation methods try to address the problem 

in its full form for directly performing multi-label classification 

by adapting the algorithms. Most traditional learning 

algorithms are developed for single-label classification 

problems [43]. Therefore, a lot of approaches in the literature 

transform the multi-label problem into multiple single-label 

problems, so that the existing single-label algorithms can be 

used.   
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This work focuses on the first approach of multi-label 

classification (e.g., detection task is divided into a series of 

multiple binary classification problems) methods using both 

deep CNNs and ViTs. Since, it is not feasible to use   the 

stastandard LabelBinarizer class for multi-class classification, 

the scikit-learn library’s MultiLabelBinarizer class is used, 

which transforms the labels of each image to a vector with a 

total eleven (11) categories where one-hot encoding transforms 

categorical labels from a single integer to a vector. The concept 

labels of images in the dataset are extracted from a manually 

annotated csv file and added in a list.   

III. CNN  AND VISUAL TRANSFORMER (VIT) 

 

Over the past decade, Deep Neural Networks (DNNs) and 

more specifically CNNs have shown state of the art 

performances in different medical image analysis tasks, such as 

disease classification, tumor segmentation, and lesion detection 

[16]. A convolutional layer in CNN is characterized by sparse 

local connectivity and weight sharing and are often followed by 

a non-linear activation, pooling, and fully connected (or dense) 

layers. 

A. CNN Architectures 
Three well known and popular  CNN architectures, such as 

Xception [17], DenseNet-121 [18], and ResNet-50 [19] are  

experimented in this study by training the dataset both from 

scratch and using transfer learning (TL)  with fine tuning 

approach.  Xception and ResNet networks use skip connections 

and multiple convolutional and max-pooling blocks in each 

layer. The training of the CNNs is performed by minimizing a 

loss function using gradient descent-based methods and 

backpropagation of the error with following configuration: 

 

� Number of nodes in the output layer matches the 

number of labels. 

� Keep activation function of the classification 

(output) layer in our models to sigmoid, which 

enables to perform multi-label classification with 

Keras. 

� Treat each output label as an independent 

Bernoulli distribution and to penalize each output 

node independently, the binary cross-entropy 

loss function is used rather than the commonly 

used categorical cross-entropy. 

B. Vision Transformer (ViT) 
Transformers are a type of DL architecture, based primarily 

upon the self-attention module, that were originally proposed 

for language translation task in NLP. Recent works have shown 

that transformers can fully replace the standard convolutions in 

DL networks by operating on a sequence of image patches, 

giving rise to ViTs [20].  These ViT models continue the long-

lasting trend of removing hand-crafted visual features and 

inductive biases from models to leverage the availability of 

larger datasets coupled with increased computational capacity. 

Capitalizing on these advances in Computer Vision, the 

medical imaging field has also witnessed growing interest for 

Transformers in segmentation, detection, classification, 

reconstruction, synthesis, registration, clinical report 

generation, and other tasks [21].  Being inspired by the success 

of ViTs in computer vision and its application in medical 

imaging fields in recent years [21,22], this work also 

experimented with different ViT models trained from both 

scratch and fine-tuned for classification using transfer learning. 

The set-up of the ViT encoder consists of a patch encoder that 

receives an input of 224 x 224 images and produces a dense 

projection of the patches and a positional embedding 

representative of each patch’s locality. 14 x 14 x 3 overlapping 

patches are obtained from the image (e.g., 256 patches per 

image) and are flattened into a 588-D array. The Patch Encoder 

layer linearly transforms a patch by projecting it into a vector 

of size projection_dim = 64-D in the experiment.   

 
 

Figure 3: Process flow diagram for ViT based 
classification 

 

As shown in Fig. 3, the patch projections and positional 

embeddings are fed into the encoder   stack which is a layer of 

4 encoders consisting of a multi-head attention layer that 

provides the attended representation of the features, a skip 

connection and an intermediate dense layer that projects the 

visual feature representation into the specified dimension size. 

The Transformer blocks produce a [batch_size =8, 
num_patches =256, projection_dim =64] tensor, which is 

processed via the classifier head with sigmoid (like CNN 

classification) to produce the final class probabilities output. 

 

IV. EXPERIMENTS AND RESULTS 

 

To validate the assumptions of the proof-of-concept, we 

experimented with a manually annotated ground truth dataset 

of 200 lung CT images with eleven different concept labels 

(Fig. 4), which is a subset of images under a much larger  

ImageCLEFmed benchmark [14].   
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Figure 4: Distribution (frequency) of eleven concept 

categories. 
 

 
 

Figure 5:  Example multilabel annotation in the csv file. 
 

    The annotation is saved in a csv file where each image is 

associated with one or more labels (Fig. 5).  Also, an online  

annotation tool, LabelImg [23]  is used to annotate the ROIs 

(with coordinates information) and annotations (Fig. 1) are 

saved as  XML files in PASCAL VOC format and YOLO 

text file format for future exploration of  object (ROI)  detection  

using techniques, such as different versions of R-CNN and 

YOLO algorithms. 

 

There  exists around one-fourth  images (out of 200) in this 

dataset (Fig. 5) , which contain only a single label (category), 

such as 18 images with a label  "cyst", 16 images with label 

"bronchiectasis" and 14 images with "ground-glass" label.  

Since, it’s a small dataset currently, almost half of the multi-

labels occurred only once in the dataset (Fig. 5), hence makes 

the training and model generation difficult.   

 

A. Pre-processing with Image Augmentation 
 
 All dataset images are resized to  224 x 224 (except 299 x 
299 for Xception model)  pixels   and  scaled the raw pixel 
intensities to the range [0, 1] and  stored as NumPy arrays.    
After that,  labels are binarized  for multi-class classification by 
utilizing the scikit-learn library’s MultiLabelBinarizer class, 
which actually  transforms the concept labels into a vector that 

encodes which concepts are present in the image. The high 
imbalance in the label frequency results in a huge bias 

towards the multilabel classification problem. Hence, data 
augmentation (scaling, rotation, flipping, etc.) is also applied 
while training as we  have  only a handful of images per concept  
class.  The images are randomly rotated (25   degrees), 
horizontally and vertically shifted by a factor of 0.2, sheared by 
0.2, and randomly horizontally flipped. 

 The goal of applying data augmentation is to increase the 
generalizability of the model. Applying a (small) amount of 
these transformations to an input image will change its 
appearance slightly, but it does not change the class label – 
thereby making data augmentation a very natural, easy method 
to apply to deep learning for computer vision tasks. The dataset 
is divided into random   training (80%) and testing (20%) subsets 
where different accuracies are measured in the testing sets to 
compare different models and feasibility of the classification. 

B. Train the model 
 

All the models (CNNs and ViTs) are built by initializing the 

Adam optimizer and   compiled using binary cross-entropy 

rather than categorical cross-entropy to treat each output label 

as an independent Bernoulli distribution where the labels are 

not disjoint. After training is complete, the models and label 

binarizes are saved to disk and loaded later during prediction in 

the test set. For training of the models from scratch, a learning 

rate = 0.001 and for pre-trained models a learning rate = 0.0001 

is used and all the models are trained with 100 epochs with 

batch size = 8. 

C. Result Analysis 
 

For evaluating the performances of different models, 

measuring simple accuracy is not sufficient when working with 

a class-imbalanced data set, like this one, where there is a 

significant disparity between the class labels. Hence, aggregate 

metrics like macro, micro, weighted and sampled avg are 

calculated as those give us a high-level view of how the models 

are performing. 

 

For example, Fig. 6 shows the macro, micro, weighted and 

sampled avg precision, recall and F1-scores for the test samples 

based on using Xception model and training the model from 

scratch.   

 

 
Figure 6:  Classification accuracy (test set) report for the 

Xception model  
 

The low avg. accuracies (in the range of 45-65%) are because 

the dataset size is currently small and there is not simply enough 
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representation of different concept labels in these low-

resolution and highly varied images. As can be observed in Fig 

7, the classifier even obtained zero (0) precision, recall and F1-

scores for three concept labels (e.g., consolidation, linear 

opacities, and mosaic patterns).  

TABLE I.  ACCURACY IN TEST SET FOR DIFFERENT MODLE 

CONFIGURATIONS 

Method Micro_Avg 
Precision 

Micro_Avg 
Recall 

Micro_Avg 
F1-Score 

Weighted_ 
Avg_F1-

Score 
DenseNet-

121 
(Scratch) 

0.70 0.44 0.54 0.52 

DenseNet-
121 (Pre-
trained) 

0.53 0.48 0.50 0.34 

Xception 
(Scratch) 

0.71 0.52 0.60 0.57 

Xception 
(Pre-

trained) 

0.56 0.31 0.40 0.37 

ResNet-50 
(Scratch) 

0.59 0.37 0.46 0.33 

ResNet-50 
(Pre-

trained) 

0.59 0.47 0.52 0.41 

ViT 
(Scratch) 

0.65 0.37 0.47 0.40 

ViT_B_16 
(Pre-

trained) 

0.30 0.70 0.42 0.52 

ViT_l_32 
(Pre-

trained) 

0.35 0.66 0.46 0.53 

�

Table I shows the aggregate metrics, such as micro avg 

precision, recall, and F-scores and also weighted avg F-scores 

for different classifiers based on using CNN and ViT models 

and training both from scratch and fine tuning with TL. For pre-

trained ViTs, both the ViT-Small model (ViT-B/16)   and ViT-

Large model (ViT-L/32) from original paper [20] are used. It is 

observed from Table 1 that Xception model (scratch) performed 

better compared to other models in terms of micro avg 

precision, and micro and weighted avg F1-scores. In addition, 

it seems the pre-trained ViTs achieved good avg recalls, 

however their precisions are very low (30-35%) compared to 

other models.    As mentioned in the original paper [20], the 

quality of the model is affected not only by architecture choices, 

but also by parameters such as the learning rate schedule, 

optimizer, weight decay, etc. In practice, it's recommended to 

fine-tune a ViT model that was pre-trained using a large, high-

resolution dataset. Overall, the accuracy (precision, recall and 

F1-scores) in the range of 60-70% are satisfactory considering 

all other facts related to the problem domain, types of images 

and current small dataset size. 

 

 
Figure 7:  Multilabel Confusion Matrix (test set) for the 

Xception model  
 

The class-wise multilabel confusion matrix is also generated 

(Fig. 7) using sklearn library to evaluate the accuracy of the 

classification, and output confusion matrices for each concept 

class.  The output of the confusion matrices in Fig. 8 also 

confirmed the reason of low accuracies for certain class labels 

(Fig. 7), such as linear opacities, mosaic etc.  

 

Figure 8:  Output result of the test image, 31927.jpg 
Fig. 8 shows the classification probabilities of different class 
labels and top two labels with associated probabilities are 
overlaid in a sample test image in the original ImageCLEFmed 
dataset with associated caption “CT scan at the level of the upper 
lobes in a 26-year-old woman demonstrates mild to moderate 
signs of bronchiectasis and peri bronchial wall thickening. 
Mosaic perfusion, bullae (straight arrows), emphysema (*), and 
an area of consolidation (curved arrow) are also seen” [14]. 
From the output we can figure out that it correctly predicted 
“bronchiectasis” and “mosaic” patterns and confused probably 
“consolidation” with “tree-in-bud” pattern. 

 

Figure 9:  Output result of the test image, 62167.jpg 
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Fig. 9 shows the classification probabilities of another test image 
(62167.jpg) in the ImageCLEFmed dataset [14] with associated 
caption as “Acute systemic lupus erythematosus pneumonitis. 
CT scan reveals extensive ground-glass attenuation throughout 
both lungs (arrows), interlobular septal thickening, bilateral 
lower lobe consolidations (complete on the left side 
[arrowheads]), and minimal pleural effusion” [14]. The output 
shows this time it correctly predicted the “ground-glass”, 
“septal-thickening” and “consolidation” class labels with 
higher probabilities. 

V. CONCLUSIONS 

 This work presents a proof-of-concept study to demonstrate 
the effectiveness of images appeared in biomedical articles as a 
valuable resource for ML and Information Retrieval tasks, such 
as concept-based classification and image search.  It shows the 
potential to improve   the retrieval of biomedical literature by 
targeting the visual content in articles, a rich source of 
information not typically exploited by conventional 
bibliographic or full-text databases. It is expected that this work  
can be extended further to generate more data (training ground 
truth)  which would offer building blocks for the development 
of advanced information retrieval systems aided by a visual 
ontology. The main limitation of this study is that the models 
(networks) are unable to predict on data they were never trained 
on using Keras networks for multi-label classification. In future, 
we plan to work on DL based object (ROI) detection based on 
the annotations gathered using LabelImg tool [23].  Overall, the 
impact of this work is substantial due to many applications such 
as digital libraries and image search engines for teaching and 
training purposes require effective and efficient techniques to 
categorize and access images.  
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