
Towards the Assessment of Basic Computational
Thinking Skills using Syntactic Analysis Techniques

Antonio Gonzalez-Torres
Computer Engineering

Costa Rica Institute of Technology
Cartago, Costa Rica

antonio.gonzalez@tec.ac.cr

Elliot Ramirez-Trejos
Computer Engineering

Costa Rica Institute of Technology
Cartago, Costa Rica

eart22@estudiantec.cr

Lilliana Sancho-Chavarria
Computing Engineering

Costa Rica Institute of Technology
Cartago, Costa Rica

lsancho@tec.ac.cr

Jose Navas-Su
Computing Engineering

Costa Rica Institute of Technology
Cartago, Costa Rica

jnavas@tec.ac.cr

Cesar Garita
Computing Engineering

Costa Rica Institute of Technology
Cartago, Costa Rica

cesar@tec.ac.cr

Jorge Monge-Fallas
School of Mathematics

Costa Rica Institute of Technology
Cartago, Costa Rica

jomonge@tec.ac.cr

Abstract—This article introduces an exploratory method for
automatically grading programming exam questions using syn-
tactic analysis. The target problem is the lack of a robust, scal-
able, and automated method to analyze computational thinking
skills from source code written by elementary school students.
The proposed method uses a variety of techniques to assess stu-
dent responses, including analyzing the programming structure,
programming correctness, and code execution based on certain
parameters defined during the exercise specification. Analysis of
the source code and evaluation of the answers to the exercises
are carried out using high performance computing to improve
the response time of the system. This preliminary work will
contribute to a robust method for automated exam scoring,
which is expected to assess and support the development of
computational thinking among students.

Keywords—Automatic evaluation, computational thinking,
source code analysis, abstract syntax trees.

I. INTRODUCTION

The fundamental role that technologies play today, as well

as advances in automation, artificial intelligence, the Internet

of Things, and cloud computing, position computational think-

ing (CT) as an essential way of thinking for people in everyday

life and in different disciplines, particularly in the fields of

Science, Technology, Engineering, and Mathematics (STEM)

[1], [2]. However, there is no consensus on the definition

of CT, it is considered as a process that transforms the

way students reason and acquire skills to solve concrete and

abstract problems by following a series of detailed steps that

ultimately lead to a programmed solution. Therefore, it encour-

ages the use of skills such as abstraction, algorithmic thinking,

problem decomposition, pattern recognition, and analysis and

evaluation of solutions to problems. This contributes to the

development of critical thinking, creativity, communication,

and collaboration.

The benefits stated have motivated its introduction in many

educational systems, but it is necessary to continuously eval-

uate the results obtained during the teaching and learning

processes of CT to improve it as a new discipline. In general,

there are currently no robust and scalable methodologies to

assess the level of students’ CT based on the source code they

produce as responses to exercises, assignments, and projects

at schools. This requires recognizing the predominant learning

patterns and determining the fulfillment of the objectives,

competencies, and expected learning outcomes.

The research described in this paper has been developed

as part of a research collaboration between the Costa Rica

Institute of Technology (TEC) and the Omar Dengo Founda-

tion (FOD). It aims at proposing methods to determine the CT

level of students in problem solving with programming, while

seeking to support the improvement of CT development in

primary and secondary school students. The research has two

main components: the definition of a programming language

and a method to automate the classification of solutions to

test questions and exercises. However, this work focuses on

describing the latter.

The definition and development of the simple programming

language was carried out to facilitate the problem solving

process for Spanish-speaking students. This programming lan-

guage is called LIE++1, it is based on Spanish and is intended

for use by elementary and high school students. The syntax

of the language was defined by FOD as a simplified version

of other programming languages, and its development was

carried out by researchers and students at TEC. The method

for automatic grading programming exams solved in LIE++

considers that the number of solutions to exam questions

and exercises that students produce in a national context is

enormous. Therefore, the design and development of this

method considered the use of high performance computing

using Spark [3].

1LIE++ uses keywords in Spanish and it it is written in Python. The output
source code of LIE++ after compilation is also Python.
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Consequently, the rest of this article describes the pre-

liminary results of this research in the following sections.

Section II presents some related work as part of the theoretical

framework of the research project. Section III describes the

method design, while Section IV describes the development of

the method. Section V presents the validation of the method

and Section VI summarizes the main conclusions and future

work of this research.

II. RELATED WORK

Computational thinking (CT) involves problem solving,

system design, and understanding of human behavior coupled

with the use of fundamental concepts of computing [4]. Some

of the core CT skills are the following:

Abstraction: It is used to present information in a simplified
way without losing important aspects.

Algorithm design: It is used to automate the resolution of
specific problems.

Decomposition: It is used to divide large problems into
smaller ones.

Problem formulation: It is used to formulate a problem in

the correct way and transfer it to the computational

environment.

CT is applied to STEM branches, but can also be applied

to other disciplines such as art, music, and everyday tasks. In

general, the trend is to consider CT as a required skill for any

profession in the near future. Different approaches that provide

automatic feedback to support faculty in the evaluation of CT

and programming exercises have been applied to one or several

courses taught in a given programming language [5]–[8].

The methods found in the literature for automatic evaluation

of programming exercises include static and dynamic code

analysis [9], machine learning techniques [10], unit testing

[11], and a combination of these. Among the aspects that

have been considered are functionality, efficiency, coding style,

programming errors, and program design [12].

However, the source code used in previous research on

automatic exercise scoring is not always publicly available, so

it is not possible to reuse the resulting software. Furthermore,

the few available tools do not allow massive analysis of

programming exercises to verify compliance with the expected

learning outcomes. Therefore, the definition of strategies to

strengthen the training curricula offered to students based on

evidence is limited.

Consequently, new methods and scalable, reliable, and ef-

fective techniques are necessary for the automatic analysis

of large databases of programming exercises. These methods

should provide information to support actions that help im-

prove educational programs that promote the teaching of CT.

In this sense, this work represents a novel contribution to the

educational field and to computer science combining static

source analysis and the use of high performance computing

(HPC) with SPARK

The analysis of CT using as basis the code artifacts pro-

duced by students can be performed using static and dynamic

analysis:

Static analysis: It is based on the study of the source code
without execution.

Dynamic analysis: It consists of execution of the code to
capture the events that occur while performing various

tasks and observing its behavior.

Source code analysis is performed using compilers and

translators that transform code from high level to low level

or another syntax model to analyze features and calculate

metrics that verify and evaluate various aspects of code quality

according to certain criteria [13]–[15]. In this work, static

analysis techniques are particularly applied to study the code

created by students in the LIE++ language to extract metrics

related to CT dimensions.
The number of source code artifacts produced by students

participating in the programs led by FOD is huge. Therefore,

this research considered the use of HPC to improve the

performance of the analysis method [3]. HPC includes several

variants based on clusters, networked computers, and cloud

computing, and therefore there are many platforms and tools

that can be used for HPC and big data applications [16]. In

this particular work, we propose the use of Apache Spark

to perform the analysis of a large number of exercises using

multiprocessing techniques [17].

III. METHOD DESCRIPTION

The definition of the method was made based on the

research question RQ1.

RQ1 How to define a method to automatically grade
a massive number of programming exam solutions in

LIE++?

The grading of the questions takes into account three factors

test:

• Use of programming structures.
• Code clones analysis.
• Execution verification.
Teachers specify the weight of each of these factors as a

percentage when they prepare question exams. The result of

each factor test is assigned to its corresponding percentage.

Then, the percentages of the three factors are added to obtain

the final grade for the question. The exam grading is calculated

by adding the results of questions that correspond to it.
The process of answering RQ1 and automatically grading

the answers provided by the students follows the steps shown

in Fig. 1:

1) The method receives the list of questions contained

in the exam, where each question includes a detailed

description of the exercise to be solved.

2) Then, it reads the list of responses provided for each

question by the students.

Then, the method runs in parallel using Spark and starts

reading the following details provided by the teachers during

the question specification stage.

1) The list of the programming structures (e.g. if, for, and

while) that are expected to be used by the student in the

response.
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2) Three or more different correct answers for each exam

question.

3) The values of the input parameters for the exercise to

be tested and the expected results it should produce for

a correct solution.

Thereafter, it uses the above details and executes the fol-

lowing tasks in parallel:

• Perform a syntactic evaluation of the source code created
by the students to answer the exam questions in LIE++.

The aim is to identify the programming structures they are

using (e.g., if, for, and while). The method also supports

the evaluation of exercises programmed in Java, C#, and

Python.

• Perform a code clone analysis. This analysis considers

the sample answers provided by the teachers. Students’

responses are compared with teachers’ samples through

clones analysis. This process results in a percentage of

code similarity. If the result of the similarity analysis is

low, the answer must be manually evaluated by a teacher.

• Execution of the source code of the answers provided by
the students using the input and output values specified

by the teachers when preparing the question. Student

responses are automatically executed using the input pa-

rameters and the results are compared with the expected

output value provided during the questions specification.

Fig. 1. Flow chart of main method activities.

Later, it takes the results of the above parallelized tasks and

performs the weighting of the scores obtained during each

type of analysis (i.e. use of programming structures, code

clones analysis, and execution verification) to produce the

exam grading. Then, it creates a grade report and stores it

into a database.

Automatic code evaluation is performed with the support

of a Generic Abstract Syntax Tree (GAST) [18], [19]. The

GAST is created through the transformation of the abstract

syntax tree of a specific language into a generic abstract syntax

tree. It allows one to carry out code analysis in the different

languages that were mapped to the structure of the GAST.

Therefore, the analysis can be performed independently for

various programming languages can be executed using high-

performance computing when it is needed due to the high

volume of information.

Figure 2 shows the steps followed for performing the

analysis of structures and clones using the GAST. These

include reading from the database Language Grammar the
syntax and grammar associated with the language in which the

answers under analysis were developed (see Figure 2, arrow

1).

GAST

Specific AST

Source code parser

Code structure 4

Maps AST to GAST 3

Create specific AST 2

1Syntax and grammar

Analysis Results

Languages 
Grammar

Source code analysis

5Results

Fig. 2. Source code analysis with GAST.

The processing of the code of each response is performed

by the task Source code parser using the relevant parser, and
invokes the specific process to create the AST according to

the associated language (see Figure 2, arrow 2). The next step

invokes the GAST mapper to associate the elements of the

particular AST with the corresponding ones in the GAST (see

Figure 2, arrow 3).

Then, the task Source code analysis starts with reading the
structure of the code represented by the GAST (see Figure 2,

arrow 4) and consists of determining the structural composi-
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tion of the code of the answers to the exercises (i.e. use of

if, if-else, while, for, do-while) and identifying the similarity

of student responses with the sample answers provided by

teachers through source code analysis. The results produced

by the Source Code Analysis process are stored in the database

Analysis Results (see Figure 2, arrow 5).
Meanwhile, the Execution verification takes the source code

and executes it with the input parameters and verifies that

the output matches the expected output value specified by the

teacher during the question preparation stage.

For the purpose of this paper, only responses to exam

questions programmed in LIE++ language were considered,

although the transformation process to the GAST structure

was performed to validate the advantages of a language-

independent method.

The following sections describe in more detail each of the

phases of the grading process applied by the method to an

example question. The percentage weights assigned to each

one of the factors could be similar to the following:

• Use of programming structures (40%).
• Code clones analysis (30%).
• Execution verification (30%).
The grading process for code clones analysis and execution

verification is straightforward, because the result satisfies or

does not satisfy the evaluation criteria. However, the grading

of the use of programming structures is more complex, as it

considers several programming structures which use can be

weighed differently.

A. Analysis of Programming Structure

The analysis of the programming structures contained in

the student responses is based on the source code provided by

them. This is carried out following the following steps:

1) Student responses are transformed to GAST by mapping

the language-specific AST structure in which they were

written to the GAST structure.

2) Student responses transformed to the GAST structure

are interpreted by the code metric analyzer to determine

the use of the required structures.

3) The grade for the specific exercise is calculated and

stored in the database.

The weight assigned to the grading example shown in Table

I for the use of programming structures represents 40% of the

total grade of the item. This 40% represents 10 points for
the exam item. Note the Expected, Analyzed and Value fields
under the If and For structures in I and the values underneath.

The example in Table I shows that students were expected

to use 5 if conditionals and 6 for structures (see Expected field
). The points assigned to if conditionals and for structures are
4 and 6, respectively (see Value field). The result of the eval-
uation of the student’s response is reflected by the Analyzed
field. Consequently, the student used 3 if conditionals and 3
for structures.
Therefore, the Partial grade obtained for the if conditionals

was!1.2 points and for structures 3 points, and the Analysis

grade 4.2 points. The calculus of the Partial grade for each
programming structure is Partial grade = Value ÷ Analyzed.
Then, the Analysis grade result is calculated as the summation
of the partial grades for all programming structures under

evaluation, as following:

n∑

i=1

Partial gradei

Partial grade is the grade obtained by the student on the
exam item for the programming structure under evaluation.

TABLE I: Composition of the question subscores.

Structures
If For

Expected Analyzed Value Expected Analyzed Value

5 3 4 6 3 6
Partial grade Partial grade

1.2 3
Analysis grade

4.2

B. Clone Analysis

Similarly to structural analysis, clone analysis is based on

two inputs: sample code solutions provided by the professors

(clones) and student answers. This analysis requires perform-

ing the following actions:

1) The identification of possible clones between the sample

solutions provided by the professors and the student

responses is performed using the GAST structure.

2) Once the degree of similarity between the sample solu-

tions provided by the teachers and the response given by

the student has been identified, the grade is computed

for the exercise under evaluation.

The degree of similarity between the students’ answers and

those provided by the teacher is calculated using a GAST-

based clone identification method. For example, Type 1 clones

are fragments of identical or nearly identical programs, while

Type 2 clones are code segments that are syntactically or

structurally similar, and Type 3 clones are copied sections with

significant changes.

C. Verification of execution

The verification of the execution results receives the input

parameters and output values specified for the exercise and the

code programmed by the students. The steps of this task are

listed below:

1) The execution of the LIE++ compiler is performed,

which produces Python code as output.

2) The translated response code to Python is executed using

the input parameters.

3) The results obtained from the execution of each answer

are compared with those specified by the teachers.

The execution of the LIE++ compiler is performed to

produce the corresponding Python. The test score is calculated

by comparing the results of the code execution with the output

values.
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The scores of the three stages (expected use of structures,

clone evaluation, and execution results) are weighted and

stored in the system database.

IV. DEVELOPMENT

During the preparation of an exam item, teachers should

provide details on the structures that students should use. Fig.

3 shows an example of a structure requirement provided by a

teacher using a graphical interface: the student should use at

least three (Cantidad, line 6) while (Nombre, line 4) structures

and the grading weight (Peso, line 5) of the requirement is 32.

Fig. 3. Conditional structure of the solution to a question.

Based on that condition, after processing a student response,

Fig. 4 shows an example of the output of the structure analysis

process. It can be seen that the 3 control structures (respues-
taXEtapa, line 6) were expected according to the condition

specified for the exercise. However, none were found, so the

score obtained is zero (PuntajeObtenido, line 11).

Fig. 4. Output of the structural analysis process.

Clone analysis includes the use of a set of sample correct

answers provided by teachers to check for the occurrence of

clones among the code of answers. Fig. 5 presents an example

in LIE++ of the code used as one of the possible solutions to

implement the fibonacci function.

Fig. 6 shows an example of the result of the clone analysis.

The result indicates that at least one of the possible solutions

with some degree of similarity to the student’s answer was

identified. The grade obtained by the student is indicated on

line 8.

In the case of execution verification, the Python code that

is generated for LIE++ is executed. Fig. 7 shows an example

of the result of the verification of the code execution of a

response, in which the score obtained is reported on line 8.

2The language used in interfaces and coding is Spanish and a JSON format
is used for the internal system representation of the inputs and outputs.

Fig. 5. Source code sample in LIE++ provided by a teacher

as a possible solution for a question.

Fig. 6. Result of clone analysis.

The programming languages used in the implementation of

the prototype to validate the method were Java and Python, and

also different libraries related to code parsing and text mining

associated with the GAST. Spark was also used for high

performance computing and Maven for managing software

packages in Java.

Fig. 7. Result of execution verification.

V. VALIDATION

The prototype validation was carried out using functional

tests, teacher evaluations, and performance analysis. Func-

tional tests were performed using several cases to verify the

operation of the prototype with respect to the analysis of code

structures, clones, and execution results. In all cases, it was

confirmed that the prototype worked as expected. In addition,
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TABLE II: Scores obtained by the prototype.

Instructor Grade
1 78.00
2 76.00
3 80.00
4 77.00
Average 77.75
Prototype 74.33
Difference 3.42%

a group of teachers was asked to perform a manual scoring of

students’ responses to an exercise. The result was compared

with the grade calculated by the prototype (see Table II). It

allows one to observe that the average grade assigned by the

teachers (average) is similar to the grade calculated by the

prototype (prototype), with a difference of 3.42%.

Finally, Fig. ?? shows a comparison of the time consumed
by the prototype as a function of the number of students

or exercise responses, considering a serial implementation

(without multiprocessing) versus a Spark implementation (with

multiprocessing). The test performed to compare the serial and

parallel execution of the methods was also successful. Spark

produced a performance improvement of 70.72% .

VI. CONCLUSIONS

The goal of the preliminary work presented in this paper

is to propose an approach to the automatic evaluation of

programming exams for elementary and high school students.

The method combines different strategies for such assessment

using rubrics for the evaluation of use of programming struc-

tures (e.g. If, ‘Fo, and While), the verification of solution (code

clones analysis) and the results produced by student answers

(execution verification).

The prototype successfully allowed us to verify the use

of programming structures in the solutions to programming

questions provided by the students. Furthermore, it also al-

lowed one to determine the degree of similarity between the

students’ answers and a set of reference solutions provided by

the teachers, which enables one to identify, to some extent,

the students’ programming skills. Furthermore, verifying the

execution of student responses by comparing actual results

with expected results that were provided for each exercise with

the corresponding input values was of great value for testing

the method and student skills.

The validation carried out with teachers verified that the

grades assigned by the prototype are similar to the average

grades assigned by a group of teachers for a particular

exam. Additionally, the prototype was implemented using

multiprocessing techniques and tools, resulting in a significant

improvement in execution time with respect to serial execution

of the code.
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