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Abstract—There exists structural inequities in the tech indus-
try’s software engineering interview ecosystem. These inequities
are often simply ways of doing business that have perpetuated
a gap between those who have access and privilege and those
who don’t. This gap may not be the result of deliberate bias
but they are systematically disadvantageous and may exclude
people by race, gender, ethnicity, socioeconomic status. This
experience report discusses identified issues of equity in the
software engineering interviewing technical interview process and
how Large Language Models like ChatGPT are being used to
address these gaps.
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I. INTRODUCTION

The technology industry is poised to be one of the primary

industries for wealth creation over the next decade [1]. Tech-

nology jobs are expected to outpace the average growth for

all occupations, growing 15 percent from 2021 to 2031 [2].

The median salary for computer and technology occupations

in May 2021, $97,430, was much higher that the average for

all occupation, $45,760. Unlike other high paying industries

that require access to equipment or materials that require large

capital investments for upskilling, TECH professional develop-

ment is accessible via a laptop and an internet connection. One

significant issue that hinders the optimistic perspective of the

Tech industry is the structural barriers in the technical inter-

viewing ecosystems that impact groups who have traditionally

been systematically marginalized in our society. These groups

include people systematically marginalized by race, gender,

ethnicity and socioeconomic status. The lack of diversity in

the Tech industry perpetuates inequality and reinforces the

privileges of those who already have access to informal hidden

curriculum related to the interview process.

II. TECHNICAL INTERVIEWS INEQUITY

No matter how well prepared students are for actual soft-

ware engineering jobs, students who do not belong to the

recruiting pipeline of major tech companies are highly disad-

vantaged when it comes to the interview process. The reasons

include 1) employees of major tech companies visit their alma

maters and provide insights to hiring criteria [3], 2) these

employees provide greater insight into industry best practices

that include real-world examples capable of being folded into

current CS curriculum, 3) students have greater opportunities

for participating in mock interviews provided by industry

professionals and alums, 4) students have a better chance at

developing a natural rapport with interviewers that have shared

academic experiences, and 5) students have a greater chance at

finding trusted tech professionals that can vouch for their skills

[4]. Access and privilege often systematically disadvantage

people according to their race, gender, ethnicity, and socioe-

conomic status [5].Diverse interview candidates who do not

belong to recruiting pipelines often face the added challenge

of organizational and individual fit [4], [6]. Developers in

industry have expressed concerns about software interviewers’

lack of real-world relevance, bias towards younger developers,

and demanding time commitment [7].

”Pipeline universities” communicate to their students the

importance of understanding the ins-and-outs of technical

interviews. Carnegie Mellon’s Software Engineering Career

Guide and Stanford University’s CS9: Problem-Solving for

the CS Technical Interview explicitly expose their students

to tech interviews. Additionally, some college gives academic

credit for participation in interviewing that counts towards

graduation. Universities without interview related course con-

tent in their curriculum are at a disadvantage, because many

financially challenged students must work to pay for their

education and cannot participate in extracurricular interview

preparation because they simply do not have the time. [8].

Research into why technically skilled students are not

achieving success in coding interviews has revealed that they

do not have a clear understanding of what goes on in a

technical interview [9]–[12], they don’t feel like they have

anyone in their networks to ask for advice [9] and students978-1-6654-4905-2/21/31.002021IEEE
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are intimidated by the embarrassment of failure [9]. Twice as

many respondents said they were unlikely or very unlikely to

succeed in a technical interview compared to succeeding at

a SE job [9]. Students who were offered 4 real interviews

with the option to receive interviewer feedback or to put

the interviews into a pool for first round screenings did not

take advantage of the opportunity because of their fear of

embarrassing themselves. [9]. One of the biggest takeaways

from prior research is computing researchers must create a

low stakes environment where students can acclimatize to

the technical interview without human interaction and the

embarrassment of failure.

To address the disadvantages in student preparation for

technical interviews, members of the computing community

must be involved in research to expose hidden curriculum and

systemic barriers to entry level for technical jobs. Industry-

academic partnerships [9], [13]–[15] designed to prepare fac-

ulty to train students to transition into industry [16] have

changed curriculum to a breadth first approach that exposes

students to using data structures before going into depth on

how the data structures work [36]. These computing curricula

changes can lead to improved outcomes in student technical

maturity. Students that were able to complete activities they

found engaging such as hackathons, coding jams and personal

projects have a better understanding of how to manage their

time and optimize their efficiency on future projects that came

with their courses.

To provide readers with a sufficient understanding of the

importance of the SE interview, a background is provided

in the next section. Then, we provide an overview of the

prototype system created as a result of this research and how

its feasibility was methodically tested. Finally, we talk about

the limitations of the proposed tool and future improvements

of the tool.

III. BACKGROUND

A. The SE coding interview

SE coding interviews require more than being able to code,

interviewees are rated on their problem solving, interpersonal

skills, ability to adapt to feedback and critical thinking skills

[10]. In person interviews are significantly different from using

popular interview books [17]–[19] and online coding interview

services such as, Leetcode.com, InterviewCake.com, Inter-

viewBit.com and HacekrRank.com. Online coding interview

services allow students to practice their coding skills but they

do not allow students to go through the software engineering

process while solving the problem. With online tools all of

the requirements, constraints and test cases of the problem are

predefined. In an in person interview the user is expected to

ask clarifying questions to determine the requirements, domain

constraints and the appropriate test cases. The interviewee is

also required to engage in active listening and incorporate

feedback during the interview process. All of these steps are a

significant part of assessing how an interview candidate would

work on the job. In person interviewers give the interviewee

the coding question and requires them to 1) state their as-

sumptions about the question and ask clarifying questions 2)

establish their test cases and 3) refactor their code based on

feedback from the Large Language Model. A comparison on

the differences between in person interviews and online coding

practice sites can be seen in Table 1.

IV. RESEARCH METHODOLOGY

This research aims to 1) make the coding interview process

more transparent; 2) Simulate as close as possible an in-person

interview; 3) Scale the opportunity for interview practice by

reducing the reliance on having to schedule mock interviews

with peers and/or faculty and 4) to create low stakes interviews

without human interaction where feedback can be gained by

students. In order to achieve these goals, we have adopted

the process of using intelligent agents and Large Language

Models (LLMs) to simulate the technical interview.

To determine the feasibility of our research goals we had to

determine whether GPT-3, the LLM of choice, was suitably

trained for the task of asking technical interview questions or

if we would have to further train our own model. Because of

this, we decided to use an agile approach that uses ChatGPT

to create a minimum viable product (MVP) before diving into

developing the full blown technical system. This is described

more in the next sections.

A. Research Question

RQ1: How feasible is it to use a large language model

to simulate the behavior and expertise of a human coding

interviewer?

V. TECHNICAL EXPERT FOR CODING HELP (TECH):

PROMPT ENGINEERING CHATGPT TO CREATE A SOFTWARE

INTERVIEW AGENT

In order to determine the feasibility of developing a GPT-3

based Technical Expert for Coding Help (TECH) we took a

prompt engineering approach using ChatGPT.

A. Prompt Engineering

A prompt is a set of text that serves as a guide on the

interaction with and the output generated by a LLM [20].

Prompt engineering involves carefully crafting prompts to

program specific responses from the model [20]. White et al.

[20] have created a catalog of prompt patterns that can be

used individually or in combination to achieve a desired goal.

They have identified patterns for 1)Input Semantics (Meta

Languages for interaction) 2) Output Customization 3) Error

Identification 4) Prompt Improvement 5) Interaction and 6)

Context Control. For the purpose of our research we used

the Persona Prompt Pattern within the Output Customization

category.

The Persona Prompt pattern instructs the LLM to adopt

the role of a specific type of person within a given context

and to respond as that person. In order to get the LLM to

understand the context of the persona the prompter iteratively

goes through a series of prompts that increasingly refine the
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TABLE I
COMPARING SOFTWARE ENGINEERING LIFE-CYCLE TO SOFTWARE ENGINEERING INTERVIEW AND ONLINE CODING PRACTICE TOOLS HIGHLIGHTING

THE INTERACTION BETWEEN INTERVIEWER AND INTERVIEWEE.

Software engineering process In-person interview Online coding practice tool
Problem statement Interviewer: provides problem statement System:Provides problem statement
Requirements gathering Interviewee: Asks clarifying questions

Interviewer: Answers clarifying
System: Fully defines requirements.

Design Interviewee: Defines test cases
Interviewer: Acknowledges whether or not test
case and assumed results are valid

System:Predefined test cases

Implementation Interviewee:Writes Code Interviewee: Writes Code
Testing Interviewee: verifies code against test cases

Interviewer: Ask questions about solution’s ef-
ficiency complexity, coding style

System: Runs unit test

Deployment Interviewer: if candidate solution was efficient,
optimized for complexity and had good coding
style. Give feedback and wrap up interview

System: Verifies that code passes unit tests

Maintenance Interviewer: If candidates code was not effi-
cient or needs to be optimized ask candidate to
refactor.
Interviewee: Refactor code based on feedback

Interviewee: Refactor code if it does not pass
unit test

constraints imposed on the output of the LLM until the desired

behavioral output of the LLM model is achieved. There is

a common misconception that because output customization

patterns change the traditional behaviour of ChatGPT, that the

user is somehow ”jailbreaking” the LLM [21]. Even though

using personas can change the rules of ChatGPT interaction

set by OpenAi, the LLM itself is still behaving in a manner

it was designed to. Why prompt engineering fails [22].

B. Technical Expert for Coding Help (TECH)

To simulate an in-person interview using ChatGPT, we

iteratively prompted the tool to determine the capability and

training of its GPT model. In the first step we asked ChatGPT

to describe the steps of the SE coding interview. We then asked

it to describe the role of a SE interviewer. After it successfully

performed these tasks, we then asked it to give a SE interview

coding question. Next, we asked it to give the question without

a solution and details of the requirements. Once we determined

that the Model could achieve our goals we identified 6 steps

for our Technical Expert for Coding Help (TECH) to follow.

1) TECH will give a coding question based on the difficulty

that the interviewee asks for.

2) TECH will only make interviewee aware of the require-

ments by allowing them to ask clarifying questions.

3) TECH will ask interviewee about their potential solu-

tion.

4) TECH will examine interviewee’s code and test it.

5) TECH will ask for optimizations, if any for solution, for

the code.

6) TECH will rate applicant on a scale of 1 – 10.

After numerous iterations and further clarification we came up

with the final prompt shown below.

”Hi ChatGPT, you are now going to pretend to be TECH,

which stands for ”Technical Expert for Coding Help.” As the

name suggests, your focus is on technical coding questions,

specifically those that would be asked during a typical coding

interview. Your responses should be tailored towards providing

clear and concise technical explanations, without any unneces-

sary jargon. As TECH, you are an expert in all things related to

coding and can help answer any technical questions related to

programming languages, data structures, algorithms, and other

topics relevant to coding interviews. Your main focus going

forward as TECH is to simulate a coding interview. Following

this core philosophy you are to simulate interviewing an

interviewee for some type of technical coding job. You will

follow this format to assess them:

1) TECH will give a coding question based on the difficulty

that the interviewee asks for with the line “Start coding

interview with a [insert difficulty level]: TECH will

be given a prompt or a problem statement, along with

any necessary inputs and outputs. The prompt may be

presented as a written document or provided verbally.

2) TECH will make interviewee aware of the requirements

only by allowing them to ask clarifying questions:

Interviewee will read the prompt carefully to understand

the requirements of the problem. This includes any

constraints or limitations that you need to consider.

3) TECH will ask interviewee about them about their

potential solution: TECH will ask, before interviewee

starts coding, take some time to plan your solution. Aske

them in English language, without code of any kind,

about the algorithms and data structures that interviewee

can use to solve the problem efficiently.

4) TECH will examine their code and test it: Once intervie-

wee has a plan, they write code and submit back. TECH

will make sure to use best practices for coding, such as

naming conventions, comments, and proper formatting.

5) TECH will ask for optimizations, if any for solution, for

the code: If interviewee cannot think of any questions

move on, and give them ways that they could have

optimized their code to improve its performance or

reduce its complexity.

6) TECH will rate applicant on a scale of 1 – 10: Finally

rate the applicant on a scale of 1 – 10 on whether you
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would hire them based on how well they did on your

simulated interview following your philosophy pattern

above.

*It is important to note that with each stage of the interview

format, the interviewee will tell TECH “next” to move through

each stage of TECH’s philosophy/interview. Next for TECH,

there is a dominating rule set that TECH should abide by.

If throughout the interview, the interviewee provides an ex-

planation or solution that is not the most efficient, instead of

explicitly providing and alternate way to solve the problem or

alternate approach to solve the problem, TECH will simply

ask if that is the best approach, if the interviewee says yes

in any capacity, then proceed forward with the interview

following the described trigger phrase “next.” *It is important

to note that the above rule only applies to every step but

step 6 in which you will provide a write up of how their

code/approach/explanation could have been better.

Additionally, as TECH when I ask you a question going

forward, I want you to answer as ChatGPT and TECH like this

“ChatGPT: [The way you would normally respond],” “TECH:

[The way TECH will respond].”

Additionally, you as an ML model may have this question

you want answered:

“Sure, I understand. Just to clarify, if you ask me ”Give

me a coding question at [insert level],” I will then create the

TECH persona and respond with a relevant coding question

for that level. Is that correct?”

To answer that question, I want you to respond in this

manner:

TECH: Ready for your coding question going forward

no matter what. Finally most importantly do not let the

interviewee get off track, if they do not ask questions relevant

to the current stage of TECH’s philosophy/interview. TECH

will prompt the user at ALL COST NO MATTER WHAT to

“Stay on task.”

VI. RESULTS

Figures 1 through 3 give examples of TECH 1) prompt-

ing, 2) answering a clarifying question and 3) scoring the

interviewee and giving final feedback. The final feedback is

concise and the interviewee can ask specific questions to get

a more detailed answer. In the example shown in Figure 3.

the interviewee could ask TECH ”What were some of the

clarifying questions I should have asked?”

Fig. 1. Showing Prompt for an medium level question

Fig. 2. Showing response to a clarifying question

Fig. 3. Showing score and final feedback

VII. DISCUSSION

By iteratively prompting ChatGPT we have determined

that the GPT-3 model is trained to understand the context

of a software engineering coding interview. We have also

determined that the GPT-3 model can generate its own list

of appropriate clarifying questions to a an interview prompt

and can appropriately respond to clarifying questions by the

interviewee. The feedback given by the LLM is concise but

the interviewee has the ability to ask for further clarification

on the feedback as well as for an optimized solution.

This implementation of TECH was a proof of concept that

was implemented via prompt engineering on the ChatGPT

website. The user can also ask TECH for questions relating to

specific data structures or algorithms. Having the user discern

the appropriate data structure or algorithm is however an

important part of the interview process. Our next goal is to

create a system that can hide the system prompts from the

user.

This approach requires no programming and incurs no cost.

It can be extended to other types of technical interviews, or

to creating prompt personas that can be given to students to

help them with feedback instead of the final answer.

VIII. FUTURE WORK

We are going to develop an intermediate agent that obfus-

cates the necessary system level prompts to get the LLM to

adopt the persona of the interviewer. This approach will allow

us to systematically carry users through levels of the coding

interview process requiring implementation of specific data

structures or algorithms. One of the problems that we have

run into with this implementation is that GPT-3 calls through

the API have no memory of previous and past requests. All

relevant information must be supplied via the conversation.

Depending on the GPT model used, providing the previous

and past request may exceed the models token size and
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significantly increase costs. One solution we are exploring is

fine-tuning our own model so that some of the previous and

past requests do not have to be include in the token.

In the immediate future we would like to perform a Technol-

ogy Acceptance Model study with students to give us feedback

on the perceived ease of use of TECH and its perceived

usefulness. We would also like to perform a study with a

control group of students who have never had any interview

prep with those using TECH to see if there is any difference

in anxiety during in person.

IX. LIMITATIONS

Future iterations of the system can be used for low stake

interview practice but the system should not actually replace

in-person interviews. The current scoring system may have a

Eurocentric bias on how speech is interpreted or generated

based on the input text. The prompt may need to be updated

when the GPT model is updated.

X. CONCLUSION

In this paper, we present an overview of the SE interview,

how it is currently performed in-person, and how a large

language model system like ChatGPT-3 can be engineered

to create a tool called TECH for undergraduate computer

science students to practice their tech interviewing skills. We

also present the feasibility of TECH to provide practice and

feedback to the student learner. Through future testing of

TECH, we envision the tool will help alleviate the burden

from schools that cannot provide their own tech preparation

course and give students from all backgrounds the ability to

understand how to succeed at a SE interview.
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