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Abstract—In this paper, we associate the Cyclic Code-Shift
Keying (CCSK) modulation to Non-Binary Polar (NB-Polar)
codes to have good decoding performance at ultra-low signal-
to-noise ratios (SNRs). We show that the kernel transformation
of order 2 using kernel coefficients equal to 1 reduces the
complexity of the encoder and decoder and does not degrade
error-correcting performance. We consider the Successive-
Cancellation Min-Sum (SC-MS) decoder. To greatly reduce the
complexity of the SC-MS decoder, we choose a small number
of most meaningful values at the check node processing. Our
simulation results show that the optimized SC-MS decoder
presents a negligible performance degradation with respect to
the SC decoder.

Index Terms—Error correction, Non-Binary Polar Codes,
Successive-Cancellation (SC) Min-Sum decoders, Channel
Polarization, Low-complexity encoder and decoder.

I. INTRODUCTION

It is well known that Binary Polar (B-Polar) codes [1] are

provable capacity-achieving error correction codes for binary-

input discrete memoryless channels. Non-Binary Polar (NB-

Polar) codes [2]–[7], derived from B-Polar codes, are defined

over the Galois Field (GF) Fq , q > 2. NB-Polar codes,

compared to B-Polar codes, reduce the probability of frame

error by processing multiple bits in parallel but have high

complexity [3], [8], [9]. In the literature, different methods

have been proposed to construct NB-Polar codes, which can be

classified into two groups. In the first group, the construction

uses a kernel transformation of order 2 [2], [4], [5]. In the

case of the second group, the kernel transformation is of order

higher than 2 [3], [6], [7], and the encoding and decoding have

an increase in complexity compared to the kernel of order 2.

The new generation of communication systems, such as the

sixth-generation (6G) system, will need to support short packet

traffic [10]–[14]. The association of NB-Polar codes and the

Cyclic Code-Shift Keying (CCSK) modulation [15] to transmit

short packets is examined in [16], [17]. In [17], the authors

also propose the Successive Cancellation Min-Sum (SC-MS)

decoder, defined in the Log-Likelihood Ratio (LLR) domain,

and which is less complex than the Successive Cancellation

(SC) decoder. The complexity of a check node (CN) is O(q2)
while a variable node (VN) has complexity of O(q).
In this paper, we consider the association of the CCSK

modulation and NB-Polar codes to have good decoding

performance at ultra-low signal-to-noise ratios (SNRs), which

is relevant for low power networks requiring long range

connectivity. In addition, we use the kernel transformation of

order 2 defined as T : (x0, x1) = (u0 ⊕ u1, h � u1) [2],

where (⊕, �) denote (addition, multiplication) operations over

Fq , and h, called kernel coefficient, is a random element of

the set Fq\{0}. A method to optimize the kernel coefficients

was proposed in [16]. In this paper, we show that in

practice, choosing the kernel coefficient equal to h = 1
does not degrade the performance of the decoder. Hence, the

multiplication ’�’ is no longer necessary for the construction,

encoding, and decoding of NB-Polar codes. That is, we no

longer need a memory to store the kernel coefficients and a

circuit that performs the operation ’�’ during encoding and

decoding. Thus, the choice h = 1 reduces the complexity of

the encoder and decoder.

To further reduce the complexity of the decoder, we consider

the SC-MS decoder. In addition, we select only a small set

of most meaningful values at the CN processing to optimize

the decoder, this helps us achieve a considerable complexity

reduction. For q = 64, we observe that the CN can achieve a

complexity reduction of around 75% making NB-Polar codes

more attractive for several applications such as 5G and 6G

standards. Our numerical results show that the optimized SC-

MS decoder presents a negligible performance degradation

with respect to the SC decoder.

The outline of the paper is as follows. In Section II, we present

the NB-Polar codes and the CCSK modulation. In Section III,

we describe the association of the CCSK modulation and the

NB-Polar codes, and we briefly discuss SC-MS decoders. In

Section IV, we show that setting all kernel coefficients equal

to 1 does not degrade error-correcting performance. We also

present new update rules to reduce the complexity of the SC-

MS decoder. Finally, Section V concludes the paper.

II. BACKGROUND

Let Fq be the GF of order q = 2p, where p > 1 and let

F
∗
q be the set of all non-zero elements of Fq . A (N,K) NB-

Polar code over Fq has a length of N = 2n, K information

symbols, N −K frozen symbols, and code rate Rc = K/N .

Let u = (u0, ..., uN−1), ui ∈ Fq for i = 0, ..., N − 1,

denote the uncoded symbols. Also, let x = (x0, ..., xN−1),
xi ∈ Fq for i = 0, ..., N − 1, denote the coded symbols

before CCSK modulation. After applying the CCSK technique

to x = (x0, ..., xN−1), η = (ηx0
, ..., ηxN−1

) is obtained

and it is sent through a noisy channel, see section II-B and
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section III-A. The output of the channel is y = (y0, ..., yN−1),
yi = (yi(0), ..., yi(q − 1)) for i = 0, ..., N − 1.

A. Non-Binary Polar Codes

In this paper, the construction of NB-Polar codes is carried out

using the kernel transformation T : (x0, x1) = (u0 ⊕ u1, h�
u1), where the kernel coefficient h is an element of the set

F
∗
q . In [2], [18], the authors have shown that T guarantees

polarization of the NB-Polar codes if q is a prime power.

To construct a NB-Polar code of length N = 2n, T is used

recursively n times, hence, we obtain a structure composed of

n layers of kernel coefficients. A method that optimizes the

kernel coefficients at each step of the recursion is proposed in

[16]. In Fig. 1, we can see the graph of a NB-Polar code of

length N = 23 composed of 3 layers of kernel coefficients,

we can also observe variable nodes (VNs) represented by =

and check nodes (CNs) represented by
⊕

. VNs and CNs are

used in the decoding process.
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Fig. 1: Graph of a NB-Polar code of length N = 8.

For a (N,K) NB-Polar code, the set of indices I =
{i0, ..., iK−1}, where 0 ≤ ij ≤ N − 1 for j = 0, ...,K − 1,

indicates the positions of the information symbols. In this

paper, I is calculated at each SNR value using a genie-aided

successive-cancellation decoder [1], and the frozen symbols

are set to zero. Note that the positions of the frozen symbols

are known for both encoder and decoder.

B. Cyclic Code-Shift Keying Modulation

The CCSK modulation maps a p-bit symbol to a pseudo-

random noise (PN) sequences of length q = 2p, hence,

the rate of the modulation is given by Rm = p/q. Let

η0 = (η0(0), ..., η0(q − 1)), η0(k) ∈ {−1,+1} for k =
0, ..., q−1, be the fundamental PN sequence. The PN sequence

ηs = (ηs(0), ..., ηs(q − 1)) is derived from η0 performing a

circular shift to the left of η0 in s ∈ {0, ..., q − 1} positions:

ηs(k) = η0((k + s) mod q) ∀k = 0, ..., q − 1.

In this paper we used a Linear Feedback Shift Register (LFSR)

to construct PN sequences that have good autocorrelation

properties. But we can also use a genetic algorithm to generate

and optimize a PN sequence.

III. CCSK MODULATION ASSOCIATED TO NB-POLAR

CODES

The recursive structure of a NB-Polar code of length N = 2n

allows us to perform the encoding and decoding in n+1 stages.

Let � ∈ {0, ..., n} denote the decoding stage. Let us denote by

L(�) = (L
(�)
0 , ..., L

(�)
N−1) the LLRs computed at stage � during

the decoding process, where L
(�)
i = (L

(�)
i (0), ..., L

(�)
i (q− 1)),

i = 0, ..., N − 1, denotes a vector of LLR. We can see in

Fig. 1 the LLRs calculated in each stage of decoding. We

compute two types of LLRs, the channel LLRs computed in the

initialization stage (� = 0), and the internal LLRs calculated

in stage � ∈ {1, ..., n}.

A. Log-Likelihood Ratio

For the CCSK modulation, we consider that η0 =
(η0(0), ..., η0(q−1)) is a fundamental PN sequence. After the

encoding of u, each coded symbol xi ∈ Fq , i = 0, ..., N−1, of

x is mapped to the PN sequence ηxi
= (ηxi

(0), ..., ηxi
(q−1))

using the expression

ηxi(k) = η0((k + xi) mod q) ∀k = 0, ..., q − 1, (1)

where ηxi
(k) ∈ {−1,+1}. After the CCSK modulation,

the code rate is Re = RcRm = (Kp)/(Nq), and

η = (ηx0
, ..., ηxN−1

) is transmitted over the Binary Input

Additive White Gaussian Noise (BI-AWGN) channel with

noise variance σ2. The channel output y = (y0, ..., yN−1),
with yi = (yi(0), ..., yi(q−1)) for i = 0, ..., N−1, is modeled

by yi(k) = ηxi
(k) + zi(k), k = 0, . . . , q − 1, where zi(k) is

a sequence of independent and identically distributed (i.i.d.)

Gaussian random variables with zero mean and variance σ2.

We can define the vector of channel LLRs Li =
(Li(0), ..., Li(q− 1)), i = 0, ..., N − 1, of a GF symbol xi as

Li = log

(
Pr(yi | η̂xi)

Pr(yi | ηxi)

)
, (2)

where η̂xi is the sign of yi, i.e. η̂xi(k) = sign(yi(k)) ∈
{−1,+1}. With Pr(y | x) = 1√

2πσ
e−(y−x)2/2σ2

for the BI-

AWGN channel, we have

Li(xi) =

q−1∑
k=0

yi(k)

σ2
(η̂xi(k)− ηxi(k)) ∀xi ∈ Fq. (3)

(3) computes only positive LLRs. In the initialization stage,

at least one element of Li should be equal to zero when the

decoder operates in the LLR domain, hence, L
(0)
i is given by

L
(0)
i (xi) = Li(xi)−min(Li) ∀xi ∈ Fq. (4)

B. Successive-Cancellation Min-Sum Decoder

The SC-MS decoder [17], exclusively formulated in the LLR

domain, is a simplified version of the SC decoder.
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We refer to [17] for a complete presentation of the SC decoder.

For a NB-Polar of length N = 2n, let û
(�)
i , i = 0, ..., N − 1,

denote the estimated symbol of u
(�)
i , where u

(n)
i = ui (resp.

u
(0)
i = xi) is the uncoded (resp. coded) symbol. Let also

consider the transformation

T :

(
u
(�−1)

θ
(�−1)
t

, u
(�−1)

φ
(�−1)
t

)
=

(
u
(�)

θ
(�−1)
t

⊕ u
(�)

φ
(�−1)
t

, h
(�−1)

φ
(�−1)
t

� u
(�)

φ
(�−1)
t

)
,

(5)

where θ
(�−1)
t = 2t − (t mod 2(�−1)) and φ

(�−1)
t = 2(�−1) +

2t− (t mod 2(�−1)), for t = 0, 1, ..., N/2− 1.

To simplify the notations in the paper, we use θ, φ, and h to

denote θ
(�−1)
t , φ

(�−1)
t , and h

(�−1)

φ
(�−1)
t

, respectively.

The update rule at a CN is given by

L′θ
(
u
(�)
φ

)
= L

(�−1)
θ

(
u
(�)
θ ⊕ u

(�)
φ

)
+ L

(�−1)
φ

(
h� u

(�)
φ

)
∀u(�)

φ ∈ Fq,

(6)

L
(�)
θ (u

(�)
θ ) = min (L′θ) ∀u(�)

θ ∈ Fq, (7)

The update rule at a VN is defined as

L′φ
(
u
(�)
φ

)
= L

(�−1)
θ

(
û
(�)
θ ⊕ u

(�)
φ

)
+ L

(�−1)
φ

(
h� u

(�)
φ

)
∀u(�)

φ ∈ Fq,

(8)

L
(�)
φ

(
u
(�)
φ

)
= L′φ

(
u
(�)
φ

)
−min

(
L′φ

)
∀u(�)

φ ∈ Fq. (9)

Equation (9) is used to avoid the very large numerical values

of internal LLRs. The estimated symbols are propagated with(
û
(�−1)
θ , û

(�−1)
φ

)
=

(
û
(�)
θ ⊕ û

(�)
φ , h� û

(�)
φ

)
. (10)

By applying (6), (7), (8), (9), and (10), we can estimate û =

(û
(n)
0 , ..., û

(n)
N−1) as follows

û
(n)
i =

⎧⎨
⎩

arg min
u
(n)
i ∈Fq

L
(n)
i

(
u
(n)
i

)
, if i ∈ I,

0, otherwise.

(11)

It is shown in [17] that the SC-MS decoder is less complex

than the SC decoder.

IV. LOW COMPLEXITY NB-POLAR CODES

In this section, we simplify the kernel transformation for

construction of the NB-Polar codes. We also reduce the

complexity of the SC-MS decoder.

A. Optimized Encoding of NB-Polar Codes

Once the construction of a NB-Polar code of length N = 2n

is finished, we obtain n layers of kernel coefficients and the

number of kernel coefficients in each layer is given by 2ψ−1,

where ψ is the layer number. Let dω denote the configuration

where the first ω layers of h are equal to 1 counting from

left to right. Hence, d0 means that all kernel coefficients are

chosen randomly, and dn means that all kernel coefficients are

equal to 1. For the NB-Polar code of N = 23 shown in Fig.

1, Fig. 2 depicts all possible configurations for dω .

To choose among these configurations dω , we take into

account the association of CCSK modulation and NB-Polar

codes. We compare the FER performance results of the SC
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Fig. 2: All possible configurations of dω .

decoder by varying dω , and we choose the configuration dω
with the largest possible number of coefficients equal to 1 that

does not degrade the FER performance of the SC decoder.

In Fig. 3, we present the FER performance results for dω = d0
and dω = dn considering different code lengths N = 2n,

different code rates Rc = K/N , and different fields Fq .

We can clearly see that the FER performance of the SC

decoder is the same for any configuration dω . Hence, dω = dn
is the best choice, that is, we set all kernel coefficients

to 1. We also performed Monte Carlo simulations for a

(N = 64,K = 20) NB-Polar code and for dω ∈ {d0, dn}
over Fq ∈ {F26 ,F27 ,F28 ,F29}, once again we obtained that

dω = dn does not degrade the FER performance, thus dω = dn
is the best choice.

From all the results obtained, we can conclude that with

the CCSK modulation we do not need kernel coefficients

h > 1. Hence, all kernel coefficients can be equal to 1,

this implies that we can simply remove the total memory

dedicated to storing the kernel coefficients. Also, in the process

of construction, encoding, and decoding, the multiplication ’�’

is no longer necessary, and T : (x0, x1) = (u0 ⊕ u1, h� u1)
becomes TO : (x0, x1) = (u0 ⊕ u1, u1). Thus, encoding of

NB-Polar codes only needs to use XOR logic gates when TO
is used as kernel transformation. We can note that the circuit

that performs the operation ’�’ for encoding/decoding is no

longer necessary, and the transformation given in (5) becomes:

TO :

(
u
(�−1)

θ
(�−1)
t

, u
(�−1)

φ
(�−1)
t

)
=

(
u
(�)

θ
(�−1)
t

⊕ u
(�)

φ
(�−1)
t

, u
(�)

φ
(�−1)
t

)
. (12)

B. Optimized Decoding of NB-Polar Codes

In this section, we present the update rules used to reduce

decoding complexity of SC-MS decoders. Let no be a

natural number such that 0 < no ≤ q, and let F
(�)
no =

{λ(�)
0 , λ

(�)
1 , ..., λ

(�)
no−1} be a subset of Fq , where λ

(�)
k ∈ Fq for

k = 0, ..., no − 1. Let L
(�)
φO

= (L
(�)
φO

(λ
(�)
0 ), ..., L

(�)
φO

(λ
(�)
no−1))

denote the no smallest values of the vector L
(�)
φ =

(L
(�)
φ (0), ..., L

(�)
φ (q−1)). With these notations and considering

TO, the update rule at a CN is given by

L′θ
(
λ
(�)
k

)
= L

(�−1)
θ

(
u
(�)
θ ⊕ λ

(�)
k

)
+ L

(�−1)
φO

(
λ
(�)
k

)
∀λ(�)

k ∈ F
(�)
no ,

(13)

L
(�)
θ (u

(�)
θ ) = min (L′θ) ∀u(�)

θ ∈ Fq, (14)
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Fig. 3: FER performance of SC decoders for dω ∈ {d0, dn} over Fq ∈ {F26 ,F27 ,F28}.

For a fixed value of u
(�)
θ , (13) and (14) perform no ≤ q

operations, while (6) and (7) perform q operations. Hence the

importance of choosing a small value of no.
For the case of the VN, the update rule is given by

L′φ
(
u
(�)
φ

)
= L

(�−1)
θ

(
û
(�)
θ ⊕ u

(�)
φ

)
+L

(�−1)
φ

(
u
(�)
φ

)
∀u(�)

φ ∈ Fq,

(15)

L
(�)
φ

(
u
(�)
φ

)
= L′φ

(
u
(�)
φ

)
−min

(
L′φ

)
∀u(�)

φ ∈ Fq. (16)

We can estimate û = (û
(n)
0 , ..., û

(n)
N−1) by applying (13), (14),

(15), (16), (10), and (11).
The value of no is optimized using Monte Carlo simulations.

To compare the FER performance of the optimized decoders,

the SC decoder performance is shown as a benchmark using

no = q and dω = d0. We consider a performance loss of less

than 0.2 dB to be negligible.
Fig. 4 shows the FER performance of SC-MS decoders for

(N = 64,K = 20) and dω = dn over F26 , we observe at

FER = 10−4 a small performance loss of about 0.19 dB for

no = 16 and 0.11 dB for no = 20, thus no between 16 and 20

is a good choice. Of course, we always choose the smallest

possible value of no.
Simulation results for (N = 64,K = 20) and Fq ∈
{F26 ,F27 ,F28 ,F29} are provided in Fig. 5. We can see at

FER = 10−4 that the performance losses of the SC-MS

decoders are around 0.11 dB for (q = 26, no = 20), 0.15

dB for (q = 27, no = 30), 0.13 dB for (q = 28, no = 40), and

0.08 dB for (q = 29, no = 50). From Fig. 4 and Fig. 5, we

can note that for a fixed code rate, the ratio no/q decreases

as q increases.
Fig. 6 depicts the FER performance of the SC-MS decoders

for N ∈ {64, 128, 256} and R = 5/16 over F26 . Comparing

the decoders, the SC-MS decoders with small values of no

can reach the FER performance of the SC decoders, we get

at FER = 10−4 a small performance loss of around 0.15 dB

for (N = 64, no = 18), 0.19 dB for (N = 128, no = 24), and

0.08 dB for (N = 256, no = 28). From these results, we can

see that for a fixed code rate and fixed q, no needs to increase

as the length N increases in order to have negligible loss.
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10-4
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100

Fig. 4: FER performance of SC-MS decoders for dω = dn,

no ∈ {12, 16, 20, 24, 28, 32, 64}, and F26 .
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Fig. 5: FER performance of SC-MS decoders for dω = dn,

N = 64 and Fq ∈ {F26 ,F27 ,F28 ,F29}.
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Fig. 6: FER performance of SC-MS decoders for dω = dn,

N ∈ {64, 128, 256} and F26 .

C. Complexity of SC-based Decoders

We can roughly estimate the complexity of the SC-MS

decoder and its optimized version by comparing the number

of operations required during encoding and decoding. We

report in Table I the complexity of a CN and a VN. Note

that the subtractions are considered as additions in terms of

complexity. We can see that in the SC-MS decoder, a CN

requires q2 additions and q(q − 1) comparisons; and a VN

requires q additions, q − 1 comparisons, and q subtractions.

When the optimized SC-MS decoder is considered, the

complexity of the CN is reduced, we can observe that the

number of additions is reduced from q2 to qno and the number

of comparisons is reduced from q(q − 1) to q(no − 1).
For the case of the (N = 64,K = 20) NB-Polar code with

q = 64 and no = 16, a large reduction in operations can

be observed at a CN: around 75% of adders, and 76.2% of

comparators.

TABLE I: Complexity of a single CN and a single VN for Fq .

Node # of adders # of comparators

SC-MS
CN q2 q(q − 1)

VN 2q q − 1

Optimized CN qno q(no − 1)

SC-MS VN 2q q − 1

V. CONCLUSION

In this paper, we have associated the CCSK modulation to

NB-Polar codes to achieve very good FER performance at

ultra-low SNRs. We have demonstrated that choosing the

kernel coefficients equal to 1 does not degrade error-correcting

performance and reduces the complexity of the encoder and

decoder. To hugely reduce the complexity of the SC-MS

decoder, we have used a limited number no of meaningful

LLR values at the check node update to optimize the decoder.

The Monte Carlo simulations have shown that the optimized

SC-MS decoder presents a negligible performance degradation

with respect to the SC decoder.

APPENDIX

Considering that x is mapped by the Binary Phase-Shift

Keying (BPSK) modulation and transmitted over the BI-

AWGN channel. For the NB-Polar code of N = 2n, we find

empirically that the optimal value of dω is obtained when ω is

in the neighborhood of �n/2�. Our results show that the kernel

coefficients closest to the channel must be different from 1.

Simulation results for N = 210, F27 , and K ∈ {341, 512, 683}
are depicted in Fig. 7. We obtain that dω = d5 is a good choice

and does not degrade the decoding performance. Note that only

31 kernel coefficients (d5) are needed instead of 1023 kernel

coefficients (d0), obtaining a memory reduction of 96.97%.

0 0.5 1 1.5 2 2.5
10-5

10-4

10-3

10-2

10-1

100

K = 341 

K = 512

K = 683

Fig. 7: BPSK modulation + BI-AWGN channel.
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