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Abstract—Automatic Dependent Surveillance–Broadcast
(ADS-B) is a useful tool to for air traffic controllers, military
and other sources that are invested in understanding a national
or global air picture. While it is highly available, it can
sometimes lack integrity due to hacking, spoofing or, even,
unintentional inaccuracies in the broadcast. Unlike primary
radar, ADS-B’s lack of trustworthiness makes it not feasible to
rely on it alone. Fusing other data sources with ADS-B can help
confirm the accuracy of the broadcasts or allow ADS-B to act as
a surrogate for primary radar and bolster the information that
primary radar can provide. This paper presents an effective
method of using ADS-B data as a surrogate for primary 3D
radar by combining the kinematic information that ADS-B data
provides with weather and aircraft images to make predictions
about aircraft characteristics.

Index Terms—Multivariate Long Short-Term Memory –
Fully Convolutional Network, Automatic Dependent Surveillance-
Broadcast, open-source data, classification, machine learning,
sensor fusion

I. INTRODUCTION

Automatic Dependent Surveillance–Broadcast (ADS-B) has

become an important research tool over the last decade. Since

its inception in 1995, many countries have begun to mandate

the use of ADS-B within controlled airspace. Notably, the

United States mandated the use of ADS-B within controlled

airspace on 1 January 2020 with Federal Regulation 14 CFR

91.225 and 14 CFR 91.227 which was followed by Europe’s

ADS-B mandate in June 2020 with the Commission Imple-

menting Regulation (EU) Number 1028/2014. These mandates

apply to a large number of aircraft even if they are not based

in Europe or the United States since international flights that

fly through either of these areas are also required to comply

with the mandate. While the exact number of aircraft that must

comply with these regulations is difficult to determine, ADS-

B repositories, such as the ADS-B Exchange, collect flight

information on over 15,000 aircraft daily [1]. In the US alone,

163,216 aircraft were ADS-B compliant as of April 2023 [2].

Funding provided by the Air Force Research Laboratory.

One of the main features of the ADS-B system is open

sharing and wide availability. For ease of access, there is no

encryption or authentication. This makes ADS-B extremely

vulnerable to cyber attacks and other inaccuracies. Jamming,

eavesdropping, spoofing and injections of fake tracks would be

easy for an attacker since ground stations cannot distinguish

the difference between a real broadcast or a fake one. Since

much of the broadcasted data is in the form of free text, even

typos are an issue. Costin et al proved the vulnerabilities to

ADS-B in 2012 [3]. For this reason, it’s important to have a

backup source of information when using ADS-B to ensure an

accurate air picture. While ADS-B provides plenty of useful

information for aircraft tracking, it cannot entirely replace

primary radar due to its lack of integrity.

ADS-B’s vulnerability concerns make fusing the ADS-B

broadcast with other related sensors an important research

area. While ADS-B on its own is not entirely trustworthy,

using a backup sensor, like primary radar or images of the

aircraft, allows ADS-B receivers to confirm the information

being provided by the broadcast. For this research, we use

only the kinematic data (speed, altitude, track and location)

within ADS-B so that our model could act as a surrogate

for a non-ADS-B data source. The kinematic data is able

to simulate primary 3D radar and potentially eliminate the

need to rely on ADS-B altogether. Using the kinematic data

within ADS-B, this paper presents a method to predict an

aircraft’s wake turbulence category (WTC), description and

designator as described in the ICAO doc 8643 [4]. To improve

the accuracy of predictions using only kinematic data, we

present a method of combining weather with the ADS-B data.

Then, to ensure the integrity of the data, we use images to

verify the authenticity of the ADS-B transmission. Section

II discusses relevant literature. Section III reviews how the

research and experiments were setup. Section IV presents the

results from the research. Finally, we conclude in section V.
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II. BACKGROUND & PREVIOUS WORK

A. Aircraft Prediction with ADS-B

ADS-B provides aircraft tracking and identification informa-

tion via an onboard ADS-B Out transponder. It is broadcast

in the clear at 1090 MHz in many countries worldwide and

at both 1090 MHz and 978 MHz within the United States.

In recent years, ADS-B has become an important tool for

researchers. Due to its prevalence, ease of use, wide availabil-

ity, and the dense information contained within the broadcast,

ADS-B has been shown to be useful for a wide variety of

aircraft research topics. The areas of research most related

to this paper include enhancing aircraft operations [5]–[8],

predicting flight patterns [9]–[13], identifying vulnerabilities

[3], improving ADS-B transmission security [14]–[17] and

predicting aircraft characteristics [18]–[22].

Created by Karim et al. in 2017, the Multivariate

Long Short-Term Memory - Fully Convolutional Network

(MLSTM-FCN) has been shown be effective in predict-

ing characteristics about aircraft using the kinematic data

found within ADS-B [19]–[23]. [20] and [19] used a Dual-

Stage Deep Engine Classifier (DSDEC) that implemented the

MLSTM-FCN to make predictions about aircraft engine types.

They were able to achieve an overall accuracy of 89.2% with

jet engine accuracy at 98.4%, turboprop accuracy at 79.2%

and piston engine accuracy at 89.9% when looking at only

the take-off phase of flight. The research completed in [22]

predicted more definitive aircraft characteristics, specifically,

WTC, description and designator using all flight phases instead

of only the take off phase. While the accuracy was reduced

overall due to the use of the entire flight path and the increase

in prediction classes (3 engine types vs 5 WTC classes and

9 description classes), the take-off phase was able to produce

slightly improved accuracy to [19] when predicting WTC and

description.

B. Image Classification

While unrelated to ADS-B aircraft classification, aircraft

image classification is important to understand for the pur-

poses of sensor fusion. Many techniques have been shown

to be effective in classifying an aircraft model based on its

image. In 2013, Maji et al. developed an image benchmark

that was gathered mostly from https://www.airliners.net/ to

facilitate a baseline for other researchers with a focus on

aircraft image classification [24]. The image repository, called

the Fine-Grained Visual Classification of Aircraft (FGVC-

Aircraft) benchmark, has been cited nearly 1,000 times in

other aircraft classification research. The benchmark includes

10,000 airplane images spanning 100 different models. Each

image is organized hierarchically by model, variant, family

and manufacturer.

In their initial attempt at classifying the images in the bench-

mark, Maji et al. achieved a variant classification accuracy

of 48.69% with a non-linear support vector machine [24].

More recent research improved the classification accuracy to

about a 90% variant classification accuracy. In 2021, Rong

et al. achieved a 93.3% accuracy using a Separated Smooth

Sampling Network (SSSNet) [25]. In 2022, Yanfeng Wang

et al. achieved a 89.2% accuracy using a Bat Algorithm and

Convolutional Neural Network (BA-CNN) [26]. Also in 2022,

Lei Wang et al. achieved a 91.4% accuracy using a Multilayer

Feature Fusion (MFF) network with Parallel Convolutional

Block (PCB) mechanism [27]. A more recent effort was

completed by Liu et al. in March 2023 that developed a

Cross-Layer Mutual Attention Learning Network (CMAL-

Net) which achieved 94.7% accuracy [28]. Their CMAL-

Net uses a Residual Network (Resnet) as its backbone. The

architecture develops multiple classifiers that are trained to

make predictions based on a specific layer from shallow to

deep. The prediction from each layer is combined to create

the final output. The backbone, the Resnet, is a Convolutional

Neural Network (CNN) that uses a technique called skip

connections to solve the exploding and vanishing gradient

problems.

C. Sensor Fusion

Information fusion is described as the blending of data

acquired from multiple sources. Sensor fusion is a subset

of information fusion and is the merging of data derived

from only sensory sources [29]. In general, sensor/information

fusion provides better reliability, improved coverage, increased

confidence, reduced ambiguity, better resolution and is more

robust than using a single data source [29].

Sensor fusion is a vast area of study with no common

model or architecture. However, one way to split sensor fusion

methods is by the two predominant areas when it can occur,

pre-classification or post-classification [30]. Like the name

implies, pre-classification occurs before the model is built and

post-classification occurs afterwards. Some research refers to

pre-classification as low or intermediate-level fusion and post-

classification as high or decision-level fusion [29], [30].

The most straightforward method to fuse data is a pre-

classification method called data level fusion. In data level

fusion, the raw data is combined before training the model.

The model is built using data from all fused sources. An-

other pre-classification method, feature level fusion, uses data

association and grouping techniques to improve performance

over just the use of the raw data. Post-classification fuses the

output or prediction from models that were built using a single

data source. A few common methods include voting, ranking,

fuzzy logic and other statistical methods. In the case of ADS-

B, fusion from other sensor sources could be invaluable since

the integrity of ADS-B data cannot be guaranteed.

III. METHODOLOGY

The intent behind this research is to fuse multiple aircraft

data sources to predict aircraft characteristics. We will make

predictions by training a model to determine an aircraft’s

WTC, description and designator as listed in the ICAO doc

8643. ADS-B, weather and images are selected as the data

sources to be combined. Weather and ADS-B are fused during
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pre-processing, while aircraft images are fused during post-

processing. Due to the success in previous research, the

MLSTM-FCN model trains the ADS-B and weather models

while the CMAL-Net trains the image models [21], [28], [31].

The steps required to fuse the three data sources can be seen

in Figure 1.

Fig. 1. Flowchart to combine ADS-B, weather and image data

A. Data Preparation

The ADS-B data in this research is obtained from the ADS-

B Exchange [1]. The original dataset spans 1 Jan 2021 to 17

Jan 2022 and is 3.7 TB of ADS-B data. However, this research

focuses on 1 Oct 2021 to 2 November 2021 with October being

used for the training set and November being used for the test

set. After obtaining the data, the files are converted from JSON

to CSVs, cleaned and broken into 300-time step tensors.

The weather data, obtained from Meteostat [32], is shown

in Table I. Calls are made to Meteostat for each ADS-B tensor

in order to obtain weather for the timeframe and location of

the aircraft during the tensor. The weather data is combined

with the ADS-B data and saved as a CSV file.

TABLE I
WEATHER FEATURES USED FROM METEOSTAT

Feature Description Type
temp The air temperature in °C Float64
dwpt The dew point in °C Float64
rhum The relative humidity in percent (%) Float64
prcp The one hour precipitation total in mm Float64
snow The snow depth in mm Float64
wdir The average wind direction in degrees (°) Float64
wspd The average wind speed in km/h Float64
pres The average sea-level air pressure in hPa Float64

The image data is obtained from the FGVC-Aircraft bench-

mark [24]. Since there are aircraft included in the FGVC-

Aircraft benchmark where the ADS-B data does not have

enough samples to train a model, and there are aircraft present

in ADS-B data that the FGVC-Aircraft benchmark does not

utilize (i.e. the two sets are not equal), the intersection of

aircraft classes between the ADS-B data and the FGVC-

Aircraft images is found. The similarities among the two

sets results in 55 remaining aircraft for the classification

model. All other aircraft samples are removed from both

datasets. In the training set this produces a total of 325,822,800

observations which translates to 1,086,076 tensors or approx-

imately 452,5322 flight hours. For testing, the intersection

yields 67,435 ADS-B/weather tensors which is equivalent to

20,230,500 timesteps or roughly 28,098 hours of flight data.

In the FGVC-Benchmark, the remaining images include 3,736

training images and 1,864 testing images.

Since ICAO hex address is not annotated in the FGVC-

Aircraft benchmark, each ICAO hex address within the ADS-B

data is randomly assigned an image that matches its designator.

Due to the number of ICAO hex addresses outnumbering the

number of images, each image could be assigned to multiple

ICAO hex addresses. This is assumed to be a negligible

concern due to the random assignment.

B. Model Development

A total of nine models are created. Three models are trained

on ADS-B only, three models are trained on both ADS-B and

weather, and three models are trained on the image benchmark.

The six models created with the ADS-B and weather data use

the MLSTM-FCN algorithm to classify each of the aircraft

characteristics of interest (WTC, description and designator).

Each ADS-B/weather model is trained for 150 epochs with a

dropout of 0.5 and a learning rate of 0.001. These parameters

are selected due to success with previous research in this

area [21], [22]. Using the test set, precision, recall, accuracy,

loss and F1 scores are found. Raw predictions are recorded

for each model. Similarly, three models are trained on the

FGVC-Aircraft images using the CMAL-Net architecture for

200 epochs. Loss, precision, recall, accuracy, F1 scores and

raw predictions are recorded. The list of models can be seen

in table II.

TABLE II
MODELS

Model # Input Data Algorithm Prediction
1 ADS-B MLSTM-FCN WTC
2 ADS-B MLSTM-FCN Description
3 ADS-B MLSTM-FCN Designator
4 ADS-B & Weather MLSTM-FCN WTC
5 ADS-B & Weather MLSTM-FCN Description
6 ADS-B & Weather MLSTM-FCN Designator
7 Images CMAL-Net WTC
8 Images CMAL-Net Description
9 Images CMAL-Net Designator

C. Post-processing

Since the results for the fusion between the weather and

ADS-B models is found by running the MLSTM-FCN model

on the test set, the bulk of post-processing focuses on combin-

ing the outputs from the models trained by the MLSTM-FCN

and the image models trained by the CMAL-Net. To combine

the outputs from the nine models, the raw predictions for each

class are normalized per tensor. The predictions from the six

ADS-B models and the three image models are combined and

the element-wise mean is found for each class per tensor. The

class with the largest mean value per tensor is selected as
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the predicted class for that tensor. The predicted classes are

compared to the actual classes for each tensor to determine

the precision, recall, accuracy and F1 score.

IV. RESULTS AND DISCUSSION

The results from the combination of weather and ADS-B

data using the MLSTM-FCN can be seen in Table III. Both

predictions on ADS-B alone and predictions with ADS-B and

weather are represented in the table. As can be seen, adding

the weather data provided improvements with the models that

predicted description and designator, but did not improve the

WTC model.

TABLE III
ADS-B AND WEATHER RESULTS

Class Wx Loss Precision Recall Accuracy F1
WTC No 0.370 0.873 0.869 0.870 0.871

Yes 0.389 0.859 0.853 0.857 0.856
Description No 0.223 0.953 0.941 0.947 0.947

Yes 0.233 0.958 0.929 0.949 0.943
Designator No 1.849 0.619 0.201 0.410 0.303

Yes 1.748 0.638 0.253 0.448 0.362

The results for the FGVC-Aircraft benchmark image clas-

sification can be seen in Table IV. The models performed

slightly better than previous research due to the reduction in

the number of aircraft samples [24]–[28].

TABLE IV
FGVC-AIRCRAFT IMAGE RESULTS

Class Loss Precision Recall Accuracy F1 Score
WTC 0.090 0.983 0.984 0.983 0.984
Description 0.083 0.989 0.969 0.987 0.978
Designator 0.283 0.954 0.953 0.953 0.953

The fusion between all three data sources can be seen in

Table V. In all cases, the image data improved the results

compared to the ADS-B and weather data alone. Additionally,

adding the ADS-B and weather data to the image data further

improved the results for WTC and description when compared

to just images alone. With designator, the accuracy was

reduced by 3% compared to the image classification by itself.

This is likely due to the low accuracy of predicting designator

using only ADS-B and weather.

TABLE V
ADS-B WITH FGVC AIRCRAFT RESULTS

Class Wx Precision Recall Accuracy F1 Score
WTC No 0.9880 0.9750 0.9898 0.9814

Yes 0.9847 0.9770 0.9890 0.9808
Description No 0.9693 0.9113 0.9956 0.9334

Yes 0.9736 0.9323 0.9960 0.9493
Designator No 0.8972 0.9435 0.9245 0.9152

Yes 0.8893 0.9316 0.9201 0.9049

V. CONCLUSION

In this work we propose an architecture for combining the

kinematic data found within ADS-B with weather and aircraft

images. Experiments using this method demonstrate when

looking at sensor fusion that occurs during pre-processing

(i.e combining weather with ADS-B kinematic data) there are

negligible improvements when predicting WTC and descrip-

tion, but there is a slight (4%) improvement when predicting

designator. When looking at the entire architecture, there is

near perfect accuracy when predicting description and 99%

accuracy when predicting WTC. This is a 1-2% improvement

over using only images. Designator’s accuracy is slightly

reduced from the accuracy with only images (-5%), but is

nearly doubled when making predictions from only ADS-B

and weather.

The architecture has two main advantages. First, with only

using the kinematic data found within ADS-B, it allows the

model to utilize ADS-B as a surrogate for primary 3D radar

and potentially eliminate the need for ADS-B altogether.

Second, it allows the use of ADS-B in combination with other

sources of aircraft data to verify the accuracy of ADS-B. This

method could easily be modified to provide more weight to

the image results which would further improve the accuracy.

It could also allow for predictions to be made without images,

but would provide a smaller confidence value on its accuracy.
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