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Abstract – Decomposing a complex system into smaller 
abstract functional blocks and developing mathematical 
models to represent their behavior is an important activity 
towards developing comprehensive system understanding. In 
this paper, we decompose the ideal Quantum Teleportation 
protocol into a collection of simple quantum circuit blocks, 
examine the behavior of each block, and show how collections 
of blocks operate to create more complex circuits. We believe 
this approach greatly simplifies the understanding of how the 
Quantum Teleportation protocol works. This paper is 
introductory in nature and is intended to help those who are 
new to modeling, simulating, and analyzing ideal quantum 
circuits. 
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1 Introduction 
  The evolution of quantum computing has driven the need 
for the development of quantum networks to interconnect 
geographically separated quantum computers [1,2]. The 
Quantum Teleportation protocol enables the transport of an 
arbitrary unknown quantum state from one location to another 
[3]. The goal of this paper is demonstrate how decomposing 
and abstracting the behavior of a complex system into a 
collection of smaller blocks can facilitate understanding of 
more complex behaviors. Specifically, we show how that 
decomposing the Quantum Teleportation protocol, an 
essential element of quantum networks, into its constituent 
blocks, studying the behavior of each block independently, 
and examining how interconnected collections of these blocks 
behave can simplify understanding of how the protocol works. 
The Quantum Teleportation protocol is often viewed as 
“magical” as it is the only way that one can transport an 
unknown quantum state from one location to another [2]. We 
seek to demystify this view to show that there is no “magic” 
behind the Quantum Teleportation protocol. One can easily 
understand how the protocol works by building a sound 
understanding of the mathematical abstractions of quantum 
mechanical blocks, examining the behavior of the constituent 
blocks, study the composition of collections of blocks, and by 
exercising simple mathematical analysis using college level 
algebra. In this paper, we assume the reader has a basic 
understanding of quantum information theory representations. 

 

The remainder of the paper is organized as follows. Section 
2 offers a basic introduction of the abstract mathematical 
modeling of two-level quantum mechanical system, Section 3 
discusses the Bell State Generation (BSG) block used to 
generate maximally entangled Bell state pairs, Section 4 
discusses the Bell State Measurement (BSM) block used to 
measure in the Bell basis, Section 5 considers the behavior of 
the BSG block connected to the BSM block, Section 6 
presents the Superdense Coding protocol, and Section 7 
presents Quantum Teleportation protocol.  Finally, Section 8 
concludes the paper and proposes our future work. 

 
2 Mathematical Modeling of Two-Level 

Quantum Mechanical Systems 
Quantum mechanics is a probabilistic theory in contrast to 

classical physics which is a deterministic theory [4]. While the 
classical bit is deterministically represented in one of two 
mutually exclusive values {0,1}, the qubit is a probabilistic 
representation in which the state of the qubit can be in a linear 
superposition of two possible orthogonal basis states: {|0 , |1 }. The state of a single qubit, | , can be written as 
shown Eq. 1: | = |0 + |1          (1) 

where  and  are complex numbers known as probability 
amplitudes, | | = ( ) is the probability of finding the 
qubit in the state |0 , | | = ( ) is the probability of 
finding the qubit in the state |1 ,  subject to the normalization 
constraint | | + | | = 1 [6]. A classical bit can be 
measured, copied, and reproduced without any loss of 
information. In contrast, a qubit generally cannot be measured 
without the likelihood of destroying information. The laws of 
quantum mechanics dictate that an unknown quantum state 
cannot be copied and resulted in the “No-Cloning Theorem” 
[5]. This is the exact reason why the Quantum Teleportation 
protocol is a required element to realize a quantum network: 
there is no other way to transport a generalized unknown 
quantum state from one location to another. 
  Note that the quantum state Psi, | , is represented using 
Dirac’s ket notation and equation (1) can be written as the 2 1 
column vector as shown in Eq. 2: | =             (2) 

The column vector contains the probability amplitudes in 
terms of the computational basis where the top element 
corresponds to the zero state, |0 , and the bottom corresponds 
to the one state, |1  as shown in Eq. 3: 
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|0 = 10   and  |1 = 01         (3) 

The corresponding bra | vector, denotes the conjugate 
transpose of |  which is represented as | = [ ] . The 
inner product of two states |  and | , denoted as | , is 
used to calculate the probability amplitude of measuring state |  when in a known prepared state | . This is a very 
important relation used frequently in quantum mechanics. 
When you take the inner product of two identical states, you 
obtain one (e.g., | = 1). When the two states are 
orthogonal, you obtain zero (e.g., 0|1 = 0). The outer 
product of two states of two states |  and | , denoted as | |, results in a matrix. For example, consider the outer 
product of |0 1| which can be calculated as shown in Eq. 4:  
 |0 1| = 10 [0 1] = 0 10 0         (4) 
 
2.1 Quantum Logic Gates 

Quantum logic gates are fundamental building blocks in 
quantum computation and are used to transform quantum 
states. In the sections that follow, we present the quantum 
gates that are found in the ideal Quantum Teleportation 
protocol. Quantum logic gates can be thought of as operators 
represented by unitary matrices acting on a two-level system. 
In this discussion, all transformations are with respect to the 
computational basis {|0 , |1 } and are unitary. Any linear 
transformation on a complex vector space can be described by 
a matrix operation. Consider , the conjugate transpose of . 

 is unitary if and only if = 1. Unitary transforms can be 
thought of as rotations of complex vector space. Ideal 
quantum gates are reversible. If you apply the same operator 
to a quantum state twice in a row, the you obtain the original 
state you started with. 

Before applying a unitary matrix to a multiple qubit state, 
you must first take the tensor product of the qubits to create a 
joint state. For example, if you have two qubits |  and |  
that are input to a two-qubit quantum gate, you must first 
generate the joint state | = | | . 

2.1.1 Single Qubit Gates 
We now examine the construction and behavior of the 

single qubit quantum gates: Identity, Pauli-X, Pauli-Y, Pauli-
Z, and the Hadamard gate. As we discuss each one, we 
present the block diagram, show how the operator 
implementing the transform is created, and comment on the 
resulting transformation.  

The block diagram of the Identity gate is shown in Fig. 1 
below: 

 
Figure 1 – Block Diagram of the Identity Gate 

The Identity gate is basis independent and does not modify 
the quantum state. The Identity operator, , is constructed as 
shown in Eq. 5:  

|0 0| + |1 1| = 1 00 1        (5) 

The Identity operator maintains the quantum state as it maps |0 |0  and |1 |1 . The Identity operator is often 
grouped with the Pauli operators ( , , ) and when done so 
is often referred to as  or . 

The block diagram of the X gate is shown in Fig. 2 below: 
 

 
Figure 2 – Block Diagram of the Pauli-X Gate 

The Pauli-X gate is the quantum equivalent of the NOT gate 
for classical computers with respect to the standard basis |0  
and |1 . The Pauli-X operator, , is constructed as shown in 
Eq. 6:  = = |1 0| + |0 1| = 0 11 0        (6) 

The Pauli-X operator is often called the “bit-flip” operator 
as it maps |0 |1  and |1 |0 . It generates a rotation 
around the  axis of the Bloch sphere by  radians. 

The block diagram of the Pauli-Y gate is shown in Fig. 3 
below: 

 
Figure 3 – Block Diagram of the Pauli-Y Gate 

The Pauli-Y operator, , is constructed as shown in Eq. 7: 

2 = = |1 0| |0 1| = 0 0       (7) 

 
The Pauli-Y operator maps |0 |1  and |1 |0 . It 
generates a rotation around the  axis of the Bloch sphere by 

 radians. 
The block diagram of the Pauli-Z gate is shown in Fig. 4 

below: 

 
Figure 4 – Block Diagram of the Pauli-Z Gate 

The Pauli-Z operator, , is constructed as shown in Eq. 8: 

3 = = |0 0| |1 1| = 1 00 1       (8) 

 
The Pauli-Z operator is often called the “phase-flip” 

operator as it maps |0 |0  and |1 |1 . It generates a 
rotation around the  axis of the Bloch sphere by  radians. 

The Identity gate and Pauli gates, as well as their 
corresponding operators, are essential elements of the theory 
of quantum mechanics. As such, it is useful to commit these 
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gates and operators to memory as they appear frequently in 
the mathematic representation of quantum mechanics. The 
Pauli gates and transforms are summarized in Table 1 below. 

Table 1 – Pauli Gate Transforms 

Quantum 
Gate 

Initial 
State 

Transform Final 
State 

I 
|0  

 |1  
= = = 1 00 1  

|0 = 10   

 |1 = 01  

X 
|0  

 |1  
= = = 0 11 0  

|1 = 01   

 |0 = 10  

Y 
|0  

 |1  
= = = 0 0  

|1 = 01   |0 = 10  

Z 
|0  

 |1  
= = = 1 00 1  

|0 = 10  |1 = 01    
  

Another important single qubit gate is the Hadamard gate 
which is used to generate superposition states. The block 
diagram of the Hadamard gate is shown in Fig. 5 below: 

 

 
Figure 5 – Block Diagram of the Hadamard Gate 

 
The Hadamard gate generates the superposition states |+  

and |  from the basis states |0  and |1 . The Hadamard 
operator, , is constructed as shown in Eq. 9:  |+ 0| + | 1| = 1 11 1        (9) 

The Hadamard operator is the “superposition” operator as it 
maps |0 |+  and |1 | . The Hadamard operator 
generates a rotation of  about the axis ( + ) 2  of the 

Bloch sphere. The Hadamard transform summary is shown in 
Table 2. 

Table 2 - Hadamard Gate Transform 
Initial State Transform Final State |0 = 10  

12 1 11 1  |+ = (|0 + |1 )2  

|1 = 01  
12 1 11 1  | = (|0 |1 )2  

|0 + |1  
12 1 11 1  

(|0 + |1 )2 + (|0 |1 )2  

2.1.2 Two Qubit Gates 
We now present the controlled-NOT ( ) or controlled-

X quantum gate. The  gate accepts two qubits as input |  and | , and produces two qubits as output |  and |  as shown in Fig. 6 below: 

 
Figure 6 – Block Diagram of the CNOT Gate 

In the  gate, the upper |  qubit remains 
unchanged. In contrast, the lower |  is transformed 
to |  based upon the value of the |  qubit. 
If the |  qubit is |0 , the |  qubit is equal 
to the |  qubit. If the |  qubit is |1 , | = | . The gate CNOT is essential 
in generating maximally entangled Bell state pairs. Table 3 
summarizes the CNOT transform.  

  
Table 3 - CNOT Gate Transform 

Initial State Transform Final State 

|00  
1 00 1 0 00 00 00 0 0 11 0  |00  

|01  
1 00 1 0 00 00 00 0 0 11 0  |01  

|10  
1 00 1 0 00 00 00 0 0 11 0  |11  

|11  
1 00 1 0 00 00 00 0 0 11 0  |10  

 
3 Bell State Generation (BSG) Block 

The Bell State Generation (BSG) block is used to generate 
one of the four maximally entangled Bell states. When two 
qubits are maximally entangled, the probabilities of each qubit 
are no longer independent. That is, both qubits will be found 
to be perfectly correlated when measured. This result holds 
even when the two Bell pair qubits are separated by some 
arbitrary large distance. By definition, Bell states cannot be 
written as a tensor product of two ket vectors. The Bell State 
Generation (BSG) block shown in Fig. 7 below and consists 
of a Hadamard gate and a CNOT gate.  
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Figure 7 – Bell State Generation (BSG) Block 

The BSG block accepts two input qubits |  and |  and 
generates a joint output state |  that is one of the four 
maximally entangled Bell states: Phi Plus | , Psi Plus | , Phi Minus | , Psi Minus |  as shown in Table 4 
below. 

Table 4 – Bell State Generator (BSG) Input and Outputs

Qubit Inputs | ,  |  
Joint State Output |  

|0 , |0  | = 12 (|00 + |11 ) 

|0 , |1  | = 12 (|01 + |10 ) 

|1 , |0  | = 12 (|00 |11 ) 

|1 , |1  | = 12 (|01 |10 ) 

To understand the operation of the BSG block, let us 
consider generation of the Phi Plus Bell state, | = | . 
In this case, the qubit inputs are | = |0  and | = |0  
and the states at |  and |  are shown in Eq. 10 and Eq. 11 
respectively.  | = |0 = 1 11 1 10 =  11        (10) | = |0 = 10              (11) 

Before we can apply the CNOT gate, we must first calculate 
the joint state of |  and |  as shown in Eq. 12: 

= 11 10 = 1010         (12) 

Finally, we apply the CNOT operator to obtain the Phi Plus 
Bell state |  as shown in Eq. 13: 

| = ( ) = 1 00 1 0 00 00 00 0 0 11 0
1010 = 1001 =

(|00 + |11 ) = |               (13) 

Note that each of the other three maximally entangled Bell 
states (Psi Plus | , Phi Minus | , Psi Minus | ) can 
be generated by simply changing the inputs to the BSG block 
as shown in Table 4. 

 

4 Bell State Measurement (BSM) Block 
The Bell State Measurement (BSM) block is used to 

measure a two-qubit joint state in the Bell basis. The Bell 
State Measurement (BSM) block shown in Fig. 8 below and 
consists of a CNOT gate, a Hadamard gate, and two 
measurement blocks. The double lines to the right of the 
measurement blocks indicate the output is a classical bit. 
Thus, the quantum state |  is measured and collapses into 
classical bit  {0,1}. Similarly, the quantum state |  is 
measured and collapses into classical bit  {0,1}. 

 
Figure 8 – Bell State Measurement (BSM) Block 

The BSM block accepts a joint state |  that is one of the 
four maximally entangled Bell states: Phi Plus | , Psi Plus | , Phi Minus | , Psi Minus |  as shown in Table 4 
below. 

Table 5 – Bell State Measurement (BSM) Input and Outputs 

Joint State Input |  
Classical Bit Outputs 

 and  

| = 12 (|00 + |11 ) = 0 = 0 

| = 12 (|01 + |10 ) = 0 = 1 

| = 12 (|00 |11 ) = 1 = 0 

| = 12 (|01 |10 ) = 1 = 1 

Note that the Bell State Measurement (BSM) block is the 
reverse of the Bell State Generation (BSG) block. 

5 Cascading the BSG and BSM Blocks 
There is value in understanding the BSG and BSM as 

fundamental building blocks to construct more complex 
quantum circuits. A deeper insight into the quantum circuits is 
gained by considering the cascade of a Bell State Generation 
(BSG) block directly connected to a Bell State Measurement 
(BSM) block as shown in Fig. 9 below. 
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Figure 9 – Cascade of the Bell State Generation (BSG) and 

Bell State Measurement (BSM) Block 

Since quantum gates are reversible and the BSG and BSM 
are mirrors of each other, the two quantum bits applied to the 
BSG inputs will appear before the measurement blocks in the 
BSM and the corresponding classical bits will be 
deterministic.  

6 Superdense Coding Protocol 
In this section, we introduce the Superdense Coding 

protocol which is a stepping stone to understand the Quantum 
Teleportation protocol. The Superdense Coding protocol uses 
the BSG and BSM blocks as well as conditional X and Z gates 
as shown in Fig. 10. In this example, BSG block is used to 
generate the Phi Plus |  Bell state. However, any of the 
four maximally entangled Bell states can be used with minor 
circuit modifications by adding classical inverters before the 
conditional X and Z gates in the circuit.  

The goal of the Superdense Coding protocol for Alice to 
send two classical bits of information to Bob by changing her 
half of the EPR pair shared with Bob. Superdense Coding 
protocol was first proposed by Bennett and Wiesner in 1970 
[5], but not published until 1992 [6]. It was first 
experimentally implemented in 1996 by Mattle, Weinfurter, 
Kwiat and Zeilinger using entangled photon pairs [7]. The 
Superdense Coding protocol (1992) was a precursor to the 
Quantum Teleportation protocol (1993) [8]. The Quantum 
Teleportation protocol is often considered as a flipped version 
of the Superdense Coding protocol. 

Superdense Coding works by Alice changing her half of a  
shared EPR pair using a conditional X and conditional Z 
block based upon two input classical bits  and  that she 
wishes to send to Bob. By transforming her half of the EPR 

pair, she can change the joint state seen by Bob from Phi Plus |  to Psi Plus | , Phi Minus | , or Psi Minus | . As we have seen in the last section, if Bob receives 
any of these states, he will measure a deterministic output 
from his BSM block. For example, if = 0 and = 0, then 
the conditional X and conditional Z are simply Identity gates. 
As a consequence, the joint quantum state seen by Bob is 
unchanged Phi Plus |  and the resulting classical bits 
output are = 0 and = 0. If Alice wishes to send = 1 
and = 0, then the conditional X is active and the 
conditional Z is an Identity gate. The impact of applying an X 
gate to Alice’s half of the EPR pair is to change the joint 
quantum state seen by Bob to Psi Plus |  and the 
resulting classical bits output are = 0 and = 1. If Alice
wishes to send = 0 and = 1, then the conditional Z is 
active and the conditional X is an Identity gate. The impact of 
applying an Z gate to Alice’s half of the EPR pair is to change 
the joint quantum state seen by Bob to Phi Minus |  and 
the resulting classical bits output are = 1 and = 0. 
Finally, if Alice wishes to send = 1 and = 1, then the 
conditional X and conditional Z gates are active. The impact 
of applying an X gate and a Z gate to Alice’s half of the EPR 
pair is to change the joint quantum state seen by Bob to Psi 
Minus |  and the resulting classical bits output are =1 and = 1.   

Table 6 – Superdense Coding Inputs and Outputs 
Alice’s 

Transmitted 
Message 

 and  

Alice’s 
Applied 
Unitary 

Transforms 
Two Qubit Joint State at Bob

Bob’s 
Received 
Message  

 and  

= 0 = 0  | = 12 (|00 + |11 ) = 0= 0 = 0 = 1  | = 12 (|01 + |10 ) = 0= 1 = 1 = 0 | = 12 (|00 |11 ) = 1= 0 = 1 = 1  | = 12 (|01 |10 ) = 1= 1 

 

 
Figure 10 – Superdense Coding Protocol Quantum Gate Diagram 
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7 Quantum Teleportation Protocol 
In this section, we introduce the Quantum Teleportation 

protocol which is the essential element used in quantum 
networks [8]. The Quantum Teleportation protocol was first 
proposed by Bennett, Brassard, Crépeau, Jozsa, Peres, and 
Wootters in 1993 [8]. It was first experimentally implemented 
in 1997 by two research groups: one led by Sandu Popescu 
and the other by Anton Zeilinger [9]. Experimental quantum 
teleportation has been demonstrated using photons, atoms, 
electrons, and superconducting circuits over distances up to 
1,400 km by Jian-Wei Pan’s group using the Micius satellite 
for space-based quantum teleportation. 

The goal of the Quantum Teleportation protocol is to send 
an unknown quantum state |  from one point to another 
using a shared EPR pair and two classical bits. Fig. 11 shows 
the quantum gate diagram for Quantum Teleportation. The 
protocol accepts an unknown quantum state |  and uses the 
BSG block (Charlie), the BSM block (Alice), and the 
conditional X and Z gates (Bob). In this example, Charlie 

generates the Phi Plus |  maximally entangled Bell state. 
However, just as in the Superdense Coding discussed above, 
any of the three other maximally entangled Bell states can be 
used with appropriate adjustments in the circuit. 

In this circuit, Charlie shares half of the EPR pair with 
Alice and the other half with Bob. Alice conducts a Bell state 
measurement of the unknown quantum state and her half of 
the EPR pair which collapses the state and instantaneously 
communicates information to Bob’s half of the EPR pair. 
Alice communicates the outcomes of the BSM measurement, 

 and , to Bob through a classical channel. Bob then 
applies the appropriate unitary transforms to his half of the 
EPR pair to recover the unknown quantum state. Bob applies a 
Pauli-Z operator when = 1 and a Pauli-X operator when = 1. The result of the protocol is that Bob has transformed 
his half of the EPR pair into |  based upon the results of 
Alice’s Bell state measurement. Note that in our discussion we 
are presenting the ideal case when there are no errors or noise, 
so | = | . 

 

 
Figure 11 – Quantum Teleportation Protocol Quantum Gate Diagram 

The key insight into understanding how the Quantum 
Teleportation protocol works is to understand that conducting 
a Bell state measurement forces the qubits that are input to the 
BSM block to collapse. Specifically, if the two qubits applied 
to the BSM block are part of a larger joint state, the 
measurement results of the BSM reveal which elements of the 
larger joint state still exist. In our view, this is the “secret 
sauce” in understanding the Quantum Teleportation protocol 
works. Once you grasp this concept, analysis of the rest of the 
protocol is simple algebraic manipulations. For this reason, it 
is useful to first rewrite qubits pairs in terms of the sums and 
differences of the four maximally entangled Bell states. When 
a Bell measurement occurs, it collapses the joint state in the 
given Bell basis. The results of the Bell state measurement 
reveal valuable information when the measured qubits are part 
of a larger joint state. Rewriting the terms in a joint state using 
this substitution is very similar to rewriting a state using a 
change of basis. Table 7 summarizes how you can rewrite a 
two qubit joint state as the sum or difference of two 
maximally entangled Bell states. It is not difficult to prove the 

equivalent representations shown in Table 7 and we 
encourage the reader to do so.  

Table 7 – Equivalent Representation of Two Qubit Joint States 
Input to a BSM using Sums and Differences of Bell States in The 

Bell Basis 
Two-Qubit 

Joint State Input to a 
BSM 

Equivalent Representation using 
Sums and Differences of Bell States

|0 |0 = |00  
12 (| + | ) 

|0 |1 = |01  
12 (| + | ) 

|1 |0 = |10  
12 (| | ) 

|1 |1 = |11  12 (| | ) 
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Now that we have the required tools to analyze the Quantum 
Teleportation circuit, we first must calculate the three qubit 
joint state highlighted in Fig. 11. This calculation is shown in 
Eq. 13 below and consists of taking the tensor product of the 

unknown quantum state to be teleported, | , and the BSG 
output, |  as shown in Eq. 14 below: 

 | | = ( |0 + |1 ) 12 (|00 + |11 ) = 12 ( |000 + |011 + |100 + |111 ) = 12 ( |00 |0 + |01 |1 + |10 |0 + |11 |1 ) = ( |00 |0 ) + ( |01 |1 ) + ( |10 |0 ) + ( |11 |1 )     (14) 
 

After writing the tensor product of the three qubits, we 
grouped the unknown qubit state to be teleported, | , and 
the A half qubit of the BSG output |  together and refer 
to this with subscript CA. We did this as we recognize the two 
qubit joint state that is input into the BSM is part of a larger 
joint state. The next step is to apply the equivalent 
substitutions from Table 7 for each of the possible two qubit 
pairs as shown in Eqs. 15, 16, 17, and 18: 

 

( |00 |0 ) = (| + | ) |0    (15) ( |01 |1 ) = (| + | ) |1    (16) ( |10 |0 ) = (| | ) |0    (17) ( |11 |1 ) = (| | ) |1    (18) 

Next, we rewrite Eq. 14 using the substitutions shown in 
Eqs. 15, 16, 17, and 18 as the result is shown in Eq. 19: 

| | = ( |0 + |1 ) 12 (|00 + |11 ) = 12 ( |00 |0 ) + 12 ( |01 |1 ) + 12 ( |10 |0 ) + 12 ( |11 |1 ) = 12 (| + | ) |0 + 12 (| + | ) |1 + (| | ) |0 + (| | ) |1             (19) 

 
Note that Eq. 19 is now written in terms of the Bell states in 
the Bell basis, so the results of a Bell state measurement will 
provide valuable information about the B qubit in the other 
half of the EPR pair after measurement. Next, we expand Eq. 

19 and collect the Bell state terms to reveal which portions of 
the larger three qubit joint state remain after measurement as 
shown in Eq. 20: 

 | | = = 12 | |0 +  12 | |0 + 12 | |1 + 12 | |1 +  12 | |0 12 | |0 + 12 | |1  12 | |1 = [| ( |0 + |1 ) + | ( |0 |1 ) + | ( |1 + |0 ) + | ( |1 |0 )]   (20) 

 

It is important to note that all three qubits shown in Eq. 20 
are still in the same total state since no measurement has yet 
been performed. Instead, we have simply performed a change 
of basis in Alice’s part of the system. The actual teleportation 
occurs when Alice conducts her Bell state measurement and 
measures qubits in the Bell basis (| , | , | , | ). 

Alice’s local measurement of the joint state collapses two of 
the qubits into one of the four states with equal probability 
(25%). After the Bell state measurement is completed, Alice 
sends the two classical bits resulting from the Bell state 
measurement to Bob over a classical channel informing him of 

the result. Bob’s half of the EPR pair, | , instantaneously 
becomes one of the four corresponding superposition states 
shown in Table 8. The Bell state measurement causes the joint 
state to collapse leaving |  in a known state. 

Now, Bob simply has to perform a unitary transform to 
recover the original state based upon the two classical bits  
and  resulting from the Bell state measurement that Alice 
sends him over a classical channel. Bob applies the transforms 
as shown in Table 9 to recover the state | . Note that the 
operators , , and  are listed in the mathematical (not 
physical) order they are applied. 
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Table 8 – Results of Alice’s Bell State Measurement and the 
Corresponding State of Bob’s Half of the EPR Pair 

Alice’s Bell State 
Measurement Result 

State of Bob’s Half of the EPR Pair |  |  ( |0 + |1 ) |  ( |0 |1 ) |  ( |1 + |0 ) |  ( |1 |0 ) 

Table 9 – Alice’s Bell State Measurement Results and the 
Corresponding Transformations Required for Bob to Recover 

the Teleported State |  

Alice’s Bell State 
Measurement 

Result 

Bob’s Transformation of |  to Recover 
the Teleported State |  |   ( |0 + |1 ) = ( |0 + |1 ) |   ( |0 |1 ) = ( |0 + |1 ) |   ( |1 + |0 ) = ( |0 + |1 ) |   ( |1 |0 ) = ( |0 + |1 ) 

 
8 Conclusions and Future Work 

In this paper, we presented a demonstration of how 
decomposing a complex system into a series of smaller 
abstract functional blocks can be very helpful in developing 
comprehensive system understanding. Specifically, we 
identified and enumerated the basic quantum circuit blocks 
found in the ideal Quantum Teleportation protocol quantum 
circuit. We examined the mathematical models used to 
represent the behavior of each of the quantum circuit blocks 
and provided some general guidelines on how the blocks 
behave. We accomplished this by understanding what happens 
when the quantum basis states are operated upon by the 
corresponding mathematical operators. We found it is very 
useful to summarize and understand how each operator acts 
on the zero state, |0 , and the one state, |1  so that when you 
examine an new quantum circuit, you will have developed 
some intuition as to how the quantum circuit operates without 
the need to immediately calculate the model outputs. 

We then closely examined how the Bell State Generation 
(BSG) and Bell State Measurement (BSM) blocks operate to 
create and measure maximally entangled Bell states. We 
showed how developing a basic understanding of these blocks 
simplifies the analysis of quantum circuit that consists of a 
cascade of a BSG block with a BSM block. Next, built on this 
finding by introducing the Superdense Coding protocol and 
quantum circuit. We saw how adding the single qubit blocks  and  enabled Alice to change her half the EPR pair to 

transform the joint state seen by Bob to from Phi Plus |  
to Psi Plus | , Phi Minus | , or Psi Minus | . 
As a consequence, when Bob conducts his Bell state 
measurement, he will obtain the classical bits that Alice 
desired to send him using the quantum channel. At this point, 
we showed how quantum states can be manipulated to attain 
the goal of Alice sending two classical bits of information to 
Bob by changing her half of the EPR pair shared with Bob. 

Finally, we examined the Quantum Teleportation protocol 
and quantum circuit. We found that all of the functional 
blocks found in the Superdense Coding circuit were also 
present in Quantum Teleportation circuit, but with the 
addition of an unknown quantum state. We then presented the 
mathematical calculations required to understand how a three 
qubit joint state can be manipulated by a Bell state 
measurement. We showed the key insight into understanding 
how the Quantum Teleportation protocol works is to 
understand that conducting a Bell state measurement forces 
the qubits that are input to the BSM block to collapse. 
Specifically, if the two qubits applied to the BSM block are 
part of a larger joint state, the measurement results of the 
BSM reveal which elements of the larger joint state still exist. 
We then showed how Bob can recover the unknown quantum 
state by manipulating the joint quantum state using the 
operators , , and . 

Our hope is that this paper enables the reader to more easily 
gain a deeper insight and to develop a better understanding of 
how to analyze quantum circuit implementations of quantum 
protocols. While this information is introductory in nature, it 
can provide value to those who are new to modeling, 
simulating, and analyzing ideal quantum circuits. 

 
Disclaimer 

The views expressed in this paper are those of the authors 
and do not reflect the official policy or position of the U.S. 
Air Force, the Department of Defense, or the U.S. 
Government. 
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