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Abstract—Many researchers when using machine learning
approaches for investing focus on predicting returns, but overlook
risk management or portfolio allocation. That may lead to risk
management problems or even uncontrolled strategy risk. In
order to address such vulnerability, we propose a framework for
training an allocation strategy that models the investment process
as a Markov decision process. We use a risk decomposition
technique and a deep reinforcement learning agent model to
compute variances and update portfolio variables efficiently.
We tested our framework with a LSTM-based agent for pre-
dicting stock movements and found that it was able to offset
systematic risk and achieve reasonable returns. The proposed
low-dimensional framework may contribute to more effective
portfolio management based on reinforcement learning.

Index Terms—AI, Reinforcement Learning, Trading

I. INTRODUCTION

Investment activity involves a wide range of concerns, such

as diversification, market impact, broker costs, bet size, timing,

and accuracy. One important aspect of investment is portfolio

allocation, which seeks to maximize profits while controlling

risk. Markowitz’s approach to portfolio allocation has been

influential, but it has also been criticized for its practical

limitations. To solve the bet sizing problem, many methods

have emerged that seek to estimate the risk of a portfolio

based on the covariance matrix of its assets. However, the

dimensionality of the covariance matrix can make it highly

susceptible to estimation errors.

To consistently create profitable portfolios, investors need

to perform forecasts about future performances. Forecasting

involves using raw forecasts to estimate the next return of

the target assets. The accuracy and timing of these forecasts

are crucial for allocating money in the right direction and

at the right time. However, predicting future movements of

financial assets is a challenging problem with a low signal-

to-noise ratio. The efficient market hypothesis (EMH) states

that asset prices are a reflection of all available information at

a given moment in time. While there are some anomalies in

the financial market that make opposite evidence to the EMH,

these anomalies do not have statistical significances as high

as other well-known problems that humans have shown to be

capable of solving.

To improve the predictive power of the forecast formula,

investors have turned to machine learning techniques. These

techniques can be used to learn from large volumes of data

and identify patterns that are not easily observable by humans.

However, they also have limitations, such as overfitting, data

snooping bias, and model instability. To address these limita-

tions, investors need to carefully design their models, validate

them using out-of-sample data, and implement them in a dis-

ciplined and systematic way. In short, investment activity is a

complex and challenging problem that requires a combination

of mathematical, statistical, and machine learning techniques,

as well as a deep understanding of market dynamics and

human behavior.

When it comes to machine learning papers on portfo-

lio allocation, most of them focus on price prediction and

return maximization, rather than risk control and portfolio

allocation [1]. The existing approaches can be classified into

two clusters, but they have their limitations. In this article,

we introduce a new approach to portfolio allocation using

reinforcement learning (RL) and risk decomposition.

The first approach to portfolio allocation involves using

supervised learning to predict the direction of next prices

movements, followed by a naive portfolio allocation, such

as equal weights. The second approach uses a reinforcement

learning algorithm to perform weights allocation among the

assets. However, the input size increases linearly with the

number of assets, which is a major disadvantage of this

approach.

We propose a new approach that uses a reinforcement

learning method that receives the covariance structure with

a fixed input shape, regardless of the number of negotiated

stocks. To do this, we use a risk decomposition method that

has been proven to be a good way to estimate portfolio risk

even before reinforcement learning. We reduce the input size

by using only two or three features per asset and computing an

even more accurate correlation matrix. This method reduces

the number of points from whatever you choose the time

628

2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE)

979-8-3503-2759-5/23/$31.00 ©2023 IEEE
DOI 10.1109/CSCE60160.2023.00108



series size to two or three, which is already a great dimension

reduction.

Our approach allows the RL model to look at one stock

at a time, which allows it to know how the entire portfolio

risk would change when changing the weights of that specific

stock. As a result, the input for risk control decreases from

an entire matrix of timeseries to a simple vector of two or

three risk measures. This approach allows us to feed the model

with other features with proper trading signal without being

obfuscated by the input matrix.

Our approach to portfolio allocation using reinforcement

learning and risk decomposition is a promising new method

that addresses some of the limitations of existing approaches.

With our approach, automated portfolio management can keep

the benefits of reinforcement learning, such as being trained

to maximize profits with or without costs, market constraints

like liquidity and several other market properties, without

the obligation of high-dimensional inputs. We hope that our

approach can contribute to the development of better trading

algorithms and risk management strategies in the future.

II. RELATED WORK

Markowitz’s classic work on portfolio selection, [2], es-

tablished the concept of risk minimization and presented

frameworks for optimal allocation among assets. However, due

to the noisy trading environment, these frameworks tend to

produce poor results in out-of-sample data. To address this

issue, several methods were developed, including heuristic

methods that balance estimation risk and assumption risk.

These methods include naive risk parity, inverse of variance,

inverse of VAR, Hierarchical Risk Parity, network distance

allocation, and minimum-variance and risk parity. Mean-

variance optimization is also used, which incorporates risk,

co-risk, and return estimates.

With the rise of RL in investment activity, there has been

an increase in its application to diversification and optimal

allocation. Works such as [3], [4] and [5] have explored RL

in investment, while [6] have used supervised learning with

several economic features to perform predictions about stocks’

next price moviments. However, supervised learning methods

have additional logic layers and lack correspondence between

training and trade targets, making them less effective than RL

in investment. The author of [5] presents an RL approach

where the agent observes stock prices and decides on port-

folio weight, using Deep Reinforcement Learning. Another

promissing approach has been developd in [7], where the

author used adversarial neural networks to find the stochastic

factor of discount, meaning the tangent portfolio.

The usage of risk factors for portfolio allocations is not

completely new. [8] and [9] show factor-based risk parity

approaches for asset allocation. Although a literature that

combines risk factors with RL to portfolio allocation is not

know by the authors at this point of time, [10] presents the

math fundamentals to use risk exposures as proxy of risk and

dimensionality reduction when computing portfolio risk and

covariance structure. In this work, the author uses different

metrics and methodologies to evaluate the covariance estimates

by using exposure to risk factors and find favorable results for

the usage of such method.

III. METHODOLOGY

The problem of portfolio management consists in dynami-

cally changing the allocations in a set of financial instruments

with the purpose of providing a good wealth over time. For

sure, each investor will have a definition of what is a “good

wealth”, and the quantitative investors actually should have an

objective metric to evaluate how good is the wealth evolution

over time.

The present work deals with the portfolio management

problem as a Markov decision process. In this case, the agent

interacts via backtest with a financial environment with the

purpose of maximizing its profits as well as controlling its

risk. The core part of the general framework to train the agent

is reinforcement learning. In this model, the agent is modeled

with a pair of neural networks, which are trained interacting

with a trading environment. The trading environment is a

software that uses historical data to simulate the enrollment

of the financial market.

A. Financial Market Variables

The dividends and splits adjusted closing price for the stock

i at the timestamp t we call pi,t. The stock financial return

from t− 1 to t is written as ri,t = 1− pi,t−1/pi,t.
The estimated volatility for the stock i at timestamp t is

calculated as the standard deviation of returns using a window

of size 20, calculated using returns ri,t−20 to ri,t−1. The

window size of 20 days was chosen to capture fast changes

in the stock volatility.

The estimated correlation between the stock i and the

market factor at timestamp t, ρi,t, is the Pearson correlation

of the stock and market factor returns from t−60 to t−1. The

window size of 60 days was chosen because the correlation

metric tends to be more stable over time.

The covariance matrix for the stocks is calculated based on

risk factors. The variances are just the square of the volatilities,

while the covariances are calculated as

covi,j,t = ρi,t ∗ ρj,t ∗ σi,t ∗ σj,t (1)

assuming that the market idiosyncratic returns 1 of the stocks

i and j is zero, the covariance formula in equation 1 can be

proved assuming that the idiosyncratic returns of two given

assets is zero.

Given the weight applied in the stock i at time t, wi,t, and

the vector of weights at time t, wt, the portfolio volatility at

the beginning of day t is calculated as

σt = wT
t Mwt, (2)

where M is the covariance matrix.

1Idiosyncratic returns, or residual returns are the residuals of the linear
regression between the stock and market factors returns. Saying that the
idiosyncratic returns of two assets have zero correlation means that their
correlation is lead exclusively from the exposure to the common factor.
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The correlation between the portfolio and the market factor

at the beginning of day t:

ρt =
∑

i

wi,t ∗ ρi,t ∗ σi,t/σt

B. Risk decomposition

For each stock, at each day, there are calculated two

variables. The first variable is the estimated stock volatility,

and the second the estimated correlation between the stock

and the market factor.

Although the following calculation is not made directly, it is

important to understand the choice of the two variables. First,

the systematic risk of the stock is calculated with the product

of the former two variables:

systematic risk = ρ ∗ σ
Second, the idiosyncratic risk of the stock is the leftover

risk:

σ2 = systematic risk2 + idiosyncratic risk2 (3)

The sum in equation 3 describes the risk decomposition into

systematic and idiosyncratic risks for only one common factor

of risk (in our case the SPY as proxy of market factor).

The two kinds of risk sum up in different ways when

building a portfolio; when we average idiosyncratic risks of

two assets it is computed as a quadratic average, whereas when

averaging systematic risks it is computed linearly. For that

reason the systematic risk is frequently called non-diversifiable

risk, whereas the idiosyncratic risk is called diversifiable risk.

C. Forecasting

The bet timing and accuracy are strongly related with the

forecasting activity. The RL agent could use the raw forecasts

to be accurate in its bets. Those raw forecasts are in general

price action features or fundamentals [6]. However, we chose

to deliver to the agent processed forecasts, in a way to reduce

both the input dimensionality and the training time.

As a forecasting function, it was chosen to be a LSTM

model, which is a recurrent neural network, see [11]. Here are

used 60 points of past financial returns to predict 1 step ahead

return. Thus, in time-step t, the returns ri,t−60, . . . , ri,t−1 were

used as features to predict ri,t+1. The architecture of the

LSTM is composed of ReLu gate functions, 20 hidden units

and was not subjected to any tuning process. For more infor-

mation on the LSTM implementation refer to [12]. Although

the forecasting function is based on a recent machine learning

model, it is not the core of this work. As mentioned previously

in this section, theoretically, the RL agent could receive as

input raw forecasts, without the need of any exogenous model.

D. Reinforcement Learning

The RL agent in the defined problem is a portfolio manager.

It receives data from the financial environment and decides

what actions to take. The data it receives consists of informa-

tion about specific stocks, as well as portfolio information. The

action it takes is simply the amount of capital to be allocated

in a specific stock at a specific point in time.

Normally, the RL literature of portfolio management defines

as the agent’s action a vector of weights:

at = wt

It assumes that for each point of time, the agent processes

information about all assets and performs allocations for all at

once.

For the present work, the step is not only divided by

days, but also by investment. On each day, the agent chooses

the investment stock by stock. That implies that the input

dimension of the agent can be drastically reduced. With that,

while the temporal tracked time-step is designated with the

index t, the RL time-step is designated with the index (i, t),
i designating i-th the stock of day t.

In order to properly define a reinforcement learning envi-

ronment, it is necessary to describe its primordial elements:

The spaces of states, actions and rewards and the transition

dynamics. Those elements are described next.

1) State Space: The state is a vector of dimension 7, being

composed by the following features:

1) The estimated portfolio volatility at time t, σt

2) The estimated volatility for stock i at time t, σi,t

3) The stock prediction (from the LSTM algorithm) for

time t+ 1, ŷi,t
4) The maximum weight allocation that is allowed,

availableWeightt
5) The weight currently allocated at the stock i at time t,

w−i,t. The “-“ superscript states that this is the weight

before the agent make the action of the timestamp (i, t)
6) The estimated correlation between the stock i and the

market factor at time t, ρi,t
7) The estimated correlation between the portfolio and the

market factor at time t, ρt

2) Action Space: Given that at each RL time-step the agent

has to deal with only one stock, the action that it may take

is a real number, which relates with the weight that will be

added to the current stock at the current point in time. The

action values range from -1 to 1. More details on how the

action will relate with the stock’s allocation are described on

section III-D4

3) Reward Space: The reward is a real number that re-

lates with the profit or loss and with the current portfolio

estimated volatility. Thus, at the RL time-step (i, t), the reward

rewardi,t is calculated as

rewardi,t = α∗wi,t ∗ri,t+1+γ ∗max(0, σt−volThreshold)

where α and γ are normalization parameters and

volThreshold is the maximum desired volatility of the

portfolio. The three parameters of the reward function will

not be subjected to a tuning process.

There are two things very important to note in the reward

function. First, at each RL time-step, the profit part of the

reward is dependent only on the performance of the specific
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stock and allocation performed at timestamp (i, t); and second,

the volatility penalization is dependent on the allocations on all

the stocks, including the stock being nogotiated at timestamp

(i, t). That means that this penalization would be completely

explained by both the RL state and the agent’s action of time-

step (i, t).

4) Transition Dynamics: Each sample of the state space is

indexed by a specific stock at a specific point in time. Thus,

while the temporal tracked time-step is designated with the

index t, the RL time-step is designated with the index (i, t).
The RL time increases following the temporal sequence,

being that at each temporal time-step, the RL environment

sweeps all the stocks available to negotiate, one at the time.

Thus, each stock gives a sample state, and requires a sample

action. The sequence in which the stocks are passed is defined

by the allocated weight w−i,t (here the superscript ”-” is used to

indicate that the variable was not updated by the agent’s action

yet at time t for the i-th stock). At the beginning of each time-

step t, the stocks are ordered with decreasing absolute weight

and are swept by that order. This sorting was made so that the

agent could reduce its larger positions at the first steps of the

day if it believes it is necessary.

The action taken by the agent at time-step (i, t) will be

first normalized (multiplied by 0.1)2 and then added to the

allocated stock weight. Besides that, the updated weight will

be bounded by the variable availableWeighti,t. The bounding

function works as below.

• The availableWeight starts as 1 for the first day and

first negotiated stock.

• At each new allocation, the available weight is reduced

by the absolute value of the allocation (agent action

multiplied by 0.1) if it increases the absolute weight on

the stock being negotiated.

• The sum of all absolute values of the weights and the

availableWeight is always equal to zero. Note that

availableWeight may sometimes be negative due to

large price movements.

• At the beginning of each day, the weights allocated in

each asset are updated by the assets corresponding price

movements. The availableWeight is then updated so the

previous item remains valid (overall sum remains zero).

This may cause the availableWeight to be lower than

zero.

• If the availableWeight is already lower or equal to

zero, any action that would increase a stock’s weight in

absolute value will generate an allocation of zero. In this

case, an allocation would take place only if it has an

opposite signal relative to the current weight in the traded

stock.

• If the availableWeight is higher the zero, the abso-

lute value of the action will be bounded so that the

2 The choice for the normalization of the action was made because of the
issue of sparse rewards, see [13]. During the training, if the agent is allowed
to make really big allocations at once, it will almost all the time be penalized
by the volatility and allocated in two or three stocks, what can really slow
down the training process.

availableWeight doesn’t become negative.

Whenever there is a new RL time-step the agent deals

with a new asset, thus, the state variables 2, 3, 5 and 6

(subsection III-D1), that are stock specific variables, change

accordingly with the new stock. The portfolio variables σt, ρt
and availableWeighti,t will change due to the previous RL

action. But it is important to remark that if the new RL time-

step also represents a new day, then the portfolio variables σt,

ρt and availableWeighti,t will be updated. This will happen

because when a new day arrive, the estimate of each stock

volatility and correlation will change, causing changes in the

portfolio variables as well, also w−i,t+1 = wi,t ∗ (1 + ri,t+1).
Besides that, when there is a transition of day, the stocks are

reordered to be swept by decreasing absolute weight.

It is an important feature of this framework that the RL

timestep is incremented by stock. This feature, in union with

the risk decomposition, has an interesting property. Whenever

a new stock/allocation arrives, it is not necessary to use

equation 2 on the updated set of stocks in the portfolio.

Instead of that, the variance change in the portfolio can be

calculated in constant time, using variables of the portfolio

before the new allocation and variables of the new stock. The

variables used to update the portfolio variance and market

correlation are: The variance and correlation of the portfolio

(before the new allocation), the variance and correlation of

the negotiated stock and finally the allocation itself. Note

that whenever we say ”correlation” we mean the correlation

between a stock or the portfolio with the market factor. The

portfolio variables updates are described in equations 4 and

5, which can be demonstrated supposing the residual returns

have zero correlation and a bit of algebra.

Δσ2 = 2∗Δwiρiσi(ρ
−σ−−w−i ρiσi)+(Δw2

i +2Δwiw
−
i )σ

2
i

(4)

ρP = ρ−Pσ
−
P /σP + ρiσi(wi − w−i )/σP (5)

5) PPO: Proximal Policy Optimization (PPO) is a policy

gradient method to train deep reinforcement learning models.

There are two neural networks composing a PPO model, the

actor network and the critic. The actor network computes

the policy, while the critic computes estimates of the value

function. This method introduces the clippage of the training

objective function, which prevents the policy update steps too

large, using the specialized KL divergence metric. It is an

on-policy algorithm commonly used in continuous action and

state spaces. Recently it has shown stable results, so we chose

it. For more information about this method refer to [14]. As for

the software, we used the stable-baselines 3 implementation

of PPO, see [15]. We did not perform any hyperparameter

tuning on the actor-critic networks. The discounting rate was

set to one. Besides that, the RL hyperparameters were set as

its default values.
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TABLE I
SELECTED STOCKS

Stock Market Capitalization (bi USD)
AAPL 583
GOOG 528
MSFT 443
BRKb 325
XOM 324

AMZN 316
GE 314
FB 295
JNJ 284

E. Hypotheses

We assumed some hypotheses to preserve the simplicity of

analysis. Such hypotheses are described next.

1) There are no costs of transaction;

2) There are no slippages or market impact of the orders;

3) The orders are executed with the desired amount of

money at the closing time, thus being possible to trade

fractions of stocks.

We must say that although hypothesis 3, the order is created

with information strictly prior to the closing time. About

hypothesis 1, although the transaction costs are a simple case

of reward engineering for RL, we chose to not use any. This

choice was made to preserve the simplicity of the analysis.

IV. EXPERIMENTS AND RESULTS

We performed experiments with the top 10 stocks based

on their market capitalization of the end of 2015. The data

consists of daily data for US listed stocks from 2004 to

2022. The market capitalization selection criteria was chosen

to assure the liquidity of the instruments. The stocks and its

market capitalization values are displayed on table I. Besides

the stocks data, we use the SPY index as a proxy for the

market factor.

Data is divided into tree sets, whose we will call A, B and

C. Set A ranges from 2004-01-01 to 2009-12-31, set B from

2010-01-01 to 2015-12-31 and set C from 2016-01-01 to 2022-

06-13. The LSTM will be trained on set A and evaluated on

sets B and C. The reinforcement learning agent is trained on

set B and evaluated on the set C. Thus, the set C is our final

out-of-sample data for evaluations.

Two benchmark strategies are evaluated:

• EW. Equal weight for all stocks

• MV. Minimum variance, but daily controlling for the

ex-ante portfolio volatility remain in 8% annual. The

minimum variance allocation is the literature default,

see [16], however using the covariances estimates as in

equation 1

Two deep reinforcement learning strategies were evaluated:

• DRL-1. Deep reinforcement learning without volatility

penalization. Parameters α = 100 and γ = 0. The

parameter α is set to 100 so the reward is numerically

the profits (or losses) in percentage.

TABLE II
OBSERVED PERFORMANCES

Strategy
Annual
Return

Annual
Volatility

Sharpe
Ratio

DRL-2 4.83% 6.50% 0.74
DRL-1 29.39% 38.07% 0.77
EW 17.88% 21.20% 0.84
MV 8.87% 8.95% 0.99

• DRL-2. Deep reinforcement learning with volatility pe-

nalization. Parameters α = 100, γ = −0.1 and

volThreshold = 0.5%. The daily volatility of 0.5% cor-

responds to an annual volatility of 7.94%. The parameter

γ is set to -0.1 so that the profits reward and the risk

penalization remain in the same scale.

There are two main comparisons that we aim to do. First

we must check if the covariances estimates are aligned with

their realizations. To do that, we should check if the realized

variance of the MV benchmark is too distant from 8% annual.

Second, we must compare the RL agents performance with

the benchmarks.

We use as main performance measures the annual return of

the strategy, the annual volatility and the annualized sharpe

ratio. For the former metric, we consider the risk-free interest

rate as zero.

The results for the five strategies are presented on table II.

The minimum variance benchmark presents one of the best

performances, besides the fact that the estimated volatility is

close to the realized volatility (target of 8% annual), which is

an indicative that the method of estimation of the covariances

that we adopt may be a good one. The fact that the realized

volatility is actually higher than 8% indicates that the market

residuals returns between the stocks actually present a positive

bias. That makes sense, once there are specific “per sector”

price movements that may not be fully captured by the market

factor.

The DRL-1 presents the highest cumulative return and

DRL-2 presents the lowest volatility among all the strategies.

The figure 1 shows that the DRL-1 is able to get higher

rates of return, however with a perceptively higher level of

volatility. As we can see in figure 2, the sum of the weights

of the strategy DRL-1 goes significantly above one. Since

from the environment dynamics it is not possible for the DRL

algorithm to ”force” weights summing more than one, we can

conclude that the DRL-1 learns to acquire long positions at

the beginning of the trading period and then to stay passive.

Although a strategy like that really worked for the large US

equities, it is not our intention either that the strategy becomes

passive nor that the strategy gets more risk over time because

it is holding positions for a really long time.

The figure 3 shows how the minimum variance strategy with

the volatility controlled in daily basis outperforms the DRL-2

strategy designed to have low variance. However, from figure 2

it is possible to realize a really interesting property of the DRL-

2 strategy: The summation of the portfolio weights oscillates

between positive and negative values, what makes this strategy
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Fig. 1. Cumulative returns of two strategies. Deep reinforcement learning
without volatility penalization (DRL-1) vs equal weight (EW).

Fig. 2. Daily summation of the portfolio weights. Comparing the behavior
of two deep reinforcement learning strategies.

really different from the other 3. This property has two major

consequences: First the DRL-2 algorithm learned that a strong

positive (or negative) bias in the portfolio weights would sum

up the systematic risk; second, the performance of the DRL-

2 does not completely rely on the US market performance,

instead it learned to be profitable without a strong systematic

risk, what approximates this strategy of a pure alpha one, see

[17].

Fig. 3. Cumulative returns of two strategies. Deep reinforcement learning
with volatility penalization vs minimum variance strategy.

V. CONCLUSIONS AND FUTURE WORKS

The purpose of this paper is to present a framework to

use reinforcement learning to perform asset allocation, con-

trolling the volatility, aiming to maximize the profits, using a

low dimensional approach. Although the framework doesn’t

present impressive out-of-sample results, the strategies are

able to control the portfolio volatility, getting away from

systematic risk and still being profitable. Besides that, the

minimum variance test shows that the realized volatility does

not change too much from the target volatility using our low

dimensional estimates of the covariance matrix. The strategy

without volatility control acquires a strong positive bias in a

way that its profits are the highest, however the risk increases

disproportional.

We believe we show that it is possible to adopt a low

dimensional approach to the portfolio allocation problem. For

future works, we aim to develop better predictors with or

without SL, we aim to use a larger universe of stocks, such

as the complete SP 500 index at each point in time and

finally we aim to explore more the RL algorithms and its

hyperparameters.
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APPENDIX

This appendix is dedicated to demonstrate how to calculate

the variation in the portfolio volatility when there is a change

in the weight applied in only one of the assets in the portfolio.
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Consider there is a portfolio defined by the weights w of

a universe of stocks. Consider also that you are willing to

change the weight of a specific stock i, applying an allocation

Δwi. For that stock, the weight before the new allocation will

be designated as w−i , and after the allocation wi = w−i +Δwi.

For any other stock j, with j �= i, the weight won’t change and

is designated as wj . There are no constraints about w other

than being a finite value. The other variables will be defined

as follows.

• σ−P the volatility of the portfolio before the new alloca-

tion.

• σP the volatility of the portfolio after the new allocation.

• ρ−P the portfolio correlation with the market factor before

the allocation.

• ρP the portfolio correlation with the market factor after

the allocation.

• σj the volatility of the stock j.

• ρj the correlation between the market factor and the stock

j.

A. Correlation of the portfolio formula

• βP is the beta of the portfolio with relation to the market

factor.

• βj is the beta of the stock j with relation to the market

factor.

• σmkt the volatility of the market factor

Theorem 1 (will not prove here):

βP =
∑

j

wjβj

Theorem 2 (will not prove here):

β = ρσ/σmkt

Substituting the beta formula from theorem 1 into the

theorem 2, we have:

ρPσP /σmkt =
∑

j

wjρjσj/σmkt

and thus:

ρP =
∑

j

wjρjσj/σP (6)

B. Covariance Formula

Theorem 3 (see [10]):

Supposing that the correlation between the idiosyncratic

returns of two given assets is zero, we have:

covj,k = βjβkσ
2
mkt

Conclusions:

With theorems 2 and 3, we have

covj,k = ρjσjρkσk (7)

C. Variance Change

Defining covj,k as in equation 7 for j �= k and covj,j = σ2
j

we have:

σ2
p =

∑

j

∑

k

wjwkcovj,k

Decomposing the equation above:

σ2
P = 2

∑

j �=i

wiwjcovi,j+w2
i σ

2
i+

∑

j �=i

∑

k �=i,j

wjwkcovj,k+
∑

j �=i

w2
jσ

2
j

The decomposition above is important because the first two

parts of the sum are dependent on the stock i and the last two

are not dependent. We can use that to compute the variation in

the portfolio variance Δσ2
P = σ2

P−(σ−P )2 due to the allocation

Δwi in stock i:

Δσ2
P = (wi − w−i )2

∑

j �=i

wjcovi,j + (w2
i − (w−i )

2)σ2
i (8)

Substituting the covariance estimate from equation 7, we

have

Δσ2
P = Δwi2

∑

j �=i

wjρiσiρjσj + (Δw2
i + 2Δwiw

−
i )σ

2
i

The equation 6 may be rewritten as:

ρPσP − wiρiσi =
∑

j �=i

wjρjσj

Substituting in the equation 8 we have:

Δσ2
P = Δwi2ρiσi(ρ

−
Pσ

−
P −w−i ρiσi) + (Δw2

i + 2Δwiw
−
i )σ

2
i

(9)

D. Portfolio Correlation Change

In the case of an allocation Δwi, From eq 6, we have:

ρPσP − wiρiσi =
∑

j �=i

wjρjσj = ρ−Pσ
−
P − w−i ρiσi

And thus:

ρP = ρ−Pσ
−
P /σP + ρiσi(wi − w−i )/σP (10)

* We must know that when σP is equal to zero, the equation

10 is not well defined, but in this case ρP will be set to zero.
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