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Abstract—Reinforcement learning of neural networks requires 

gradient-free algorithms as labeled training data are not available. 
Evolutionary algorithms are well-suited for this purpose since they 
do not rely on gradients. However, the success of training neural 
networks with evolutionary algorithms is contingent on the careful 
selection of appropriate algorithms, given the numerous 
algorithmic variations available. In this study, the author 
evaluates the efficacy of Differential Evolution (DE), Genetic 
Algorithm (GA), and Evolution Strategy (ES) for the 
reinforcement learning of neural networks, utilizing a pendulum 
control task. The experimental results indicate that DE exhibits 
statistically significant superiority over GA and ES. While GA 
performs better than ES, this difference is not statistically 
significant. The study highlights DE’s ability to effectively balance 
between exploratory and exploitative search, adapting to the 
problem at hand. Based on these findings, it is suggested that an 
algorithm possessing such characteristics is better suited for 
evolutionary reinforcement learning of neural networks. 

Keywords—Differential Evolution, Genetic Algorithm, 
Evolution Strategy, neuroevolution, reinforcement learning 

I. INTRODUCTION 

Evolutionary algorithms [1] provide a viable approach for 
reinforcement learning of neural networks, as they do not rely 
on gradients. Q-learning [2], a popular reinforcement learning 
method, requires obtaining the reward r(t) for action a(t) at state 
s(t), to determine the next action a(t+1), where t denotes the time 
step. However, evolutionary algorithms only necessitate 
evaluating the reward after the completion of an episode, 
negating the need for designing appropriate rewards for all state-
action pairs. However, given the plethora of algorithmic 
variations available, it is crucial to carefully select the most 
appropriate algorithm for successful neural network training. 
Previous work by the author [3,4] evaluated Genetic Algorithm 
(GA) [5] and Evolution Strategy (ES) [6]. In this paper, the 
author expands on the earlier work by evaluating Differential 
Evolution (DE) [7] and comparing the performance of the three 
algorithms. 

II. PENDULUM TASK 

In this study, the OpenAI Gym pendulum balancing task1,2 
was utilized. The objective of this task is to swing the pendulum 
up, maintaining it in an upright position. The author modified 

the system such that the control task initiates with the pendulum 
in a downward position (Fig. 1(a)) and the goal is to make and 
keep the pendulum upright (Fig. 1(b)). Furthermore, the author 
adjusted the system such that the control task starts with the 
pendulum having zero angular velocity. 

  
(a) Initial state:  
angular  

(b) Goal state:  
angular  

Fig. 1. OpenAI Gym pendulum balancing task1,2 

Each episode of the task consists of 200 timesteps, with the 
controller observing the current state and selecting the 
appropriate action in each step. The observation comprises 
cos(θ), sin(θ), and the angular velocity of the pendulum. The 
action corresponds to the torque applied to the pendulum, with 
a torque range of [-2.0, 2.0]. The controller needs to swing the 
pendulum such that the force of gravity assists in increasing the 
angular velocity to a level sufficient for the pendulum to climb 
over. 

The author defines the fitness of a neural network controller 
as follows.  

� ���

� ���

θ(t) represents the angular position of the pendulum at each 
time step t. The initial state is such that Error(t)=|±π|/π=1, 
resulting in 1-Error(t)=0. Conversely, in the goal state, 
Error(t)=0/π=0, so that 1-Error(t)=1. The fitness score increases 
with a decrease in Error(t) for a larger number of time steps. 
Therefore, a controller performs better if it can quickly stabilize 
the pendulum in the upright position and maintain it for a longer 
duration. 

III. NEURAL NETWORKS 

The controller in this study is implemented using a three-
layered feedforward neural network, also known as a multilayer 
perceptron (MLP). Fig. 2 illustrated the topology of the MLP. 

1._https://gym.openai.com/envs/Pendulum-v0/ 
2._https://github.com/openai/gym/blob/master/gym/envs/classic_control/ 
2._pendulum.py 
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The hyperbolic tangent (tanh) function is adopted as the 
activation function for the MLP units, which produces an output 
value within the range of [-1.0, 1.0]. 

 
Fig. 2. Neural network topology in this study.  

The MLP serves as the policy function, which maps the 
observation of the current state to an action, i.e., action(t) = 
F(observation(t)). The input layer of the MLP consists of three 
units that receive the values of cos(θ), sin(θ), and the angular 
velocity, respectively. The output layer has one unit that 
generates the torque applied to the pendulum. To ensure that the 
torque falls within the range [-2.0, 2.0], the output value is 
multiplied by 2.0. 

IV. EVOLUTINARY TRAINING OF NEURAL NETWORKS 

The MLP depicted in Fig. 2 is composed of M+L units and 
NM+ML connections, resulting in a total of M+L+NM+ML 
parameters. The dimensionality of the parameter space is 
denoted by D=M+L+NM+ML. The training of the MLP is 
equivalent to optimizing a D-dimensional real vector, 
represented by , where each  corresponds 
to one of the D parameters in the MLP. 

Neuroevolution, the process of training neural networks 
using evolutionary algorithms, has been widely researched [8]. 
In this study, the D-dimensional vector  representing the 
parameters of the MLP is optimized using either DE, GA, or ES. 
These algorithms treat  as a chromosome and apply 
evolutionary operators to it. The fitness of  is evaluated using 
(1) and (2). 

V. EXPERIMANT 

The MLP in this study has 3 input units (N) and 1 output unit 
(L). The number of hidden units (M) is set to 8, 16, or 32, which 
is consistent with previous work [3,4]. Therefore, the 
dimensionality of the parameter vector (D) is 41, 81, or 161 for 
M=8, 16, or 32, respectively. 

In this experiment, DE reproduces offsprings by the 
rand/1/bin method [9]. DE adaptively balances explorative and 
exploitive search to the optimization problem at hand because it 
reproduces offspring solutions by utilizing the difference 
between two solutions in the current population. In the initial 
generation, the difference is large and becomes adaptively 
smaller as the number of generations increases. On the other 
hand, GA reproduces offspring through crossover and mutation, 
where the blend crossover [10] for continuous chromosomes is 
adopted, promoting exploration more than exploitation. ES 
reproduces offspring by perturbation within a fixed step size, 
promoting exploitation more than exploration. Thus, this study 
compares three types of search: GA that emphasizes global 

search, ES that emphasizes local search, and ES that balances 
global and local searches.  

Table 1 presents the hyperparameter configurations for the 
algorithms, which were determined empirically in preliminary 
experiments. In Table 1, setting (a) is designed for experiments 
with 10 offsprings per generation and 500 generations, and 
setting (b) is designed for experiments with 50 offsprings per 
generation and 100 generations. The total number of fitness 
evaluations was 50,000 for each trial in both cases. 

TABLE I.  HYPERPARAMETERS OF DE, GA AND ES 

Algorithm Hyperparameter Value 

DE 
#Parents 5 
Step size [-1.0, 1.0] 

GA 
α for blend crossover 0.5 
#Elites (a)2 (b)10 
Mutation probability 1/D 

DE 
Scaling factor (F) (a)0.1 (b)0.2 
Crossover rate (CR) (a)0.5 (b)0.9 

Each of the three algorithms was applied 11 times under the 
same settings, yielding 11 fitness scores for the best solution for 
each setting. With three variations of the number of hidden units 
(8, 16, 32) and two variations of population sizes (10, 50), a total 
of six combinations of settings were tested. Thus, 66 fitness 
scores were obtained for each algorithm (11 runs × 6 settings). 
These data were used to compare the performance of the three 
algorithms.  

VI. RESULT 

Tables 2-4 presents the fitness scores obtained from the 11 
runs under the same settings for DE, GA and ES, respectively. 
Tables 3 and 4 are cited from previous papers by the author [3,4].  

TABLE II.  FITNESS SCORES BY DIFFERENTIAL EVOLUTION 

(a) 10 offsprings, 500 generations. 
Units Best Median Worst 

8 0.832  0.825  0.608  
16 0.830  0.828  0.731  

32 0.832  0.824  0.796  
 

(b) 50 offsprings, 100 generations. 
Units Best Median Worst 

8 0.832  0.828  0.801  
16 0.832  0.822  0.812  

32 0.831  0.819 0.783  
 

TABLE III.  FITNESS SCORES BY GENETIC ALGORITHM [3] 

(a) 10 offsprings, 500 generations.  
Units Best Median Worst 

8 0.833 0.827 0.609 

16 0.834 0.830 0.605 

32 0.834 0.832 0.628 
 

(b) 50 offsprings, 100 generations.  
Units Best Median Worst 

8 0.817 0.768 0.737 

16 0.816 0.769 0.732 

32 0.803 0.776 0.742 
 

TABLE IV.  FITNESS SCORES BY EVOLUTION STRATEGY [4] 

(a) 10 offsprings, 500 generations. 
Units Best Median Worst 

8 0.829 0.612 0.520 

16 0.833 0.823 0.579 
32 0.832 0.831 0.613 

 

(b) 50 offsprings, 100 generations. 
Units Best Median Worst 

8 0.833 0.825 0.583 

16 0.833 0.832 0.612 
32 0.833 0.831 0.586 

 

By comparing these tables, the following findings are 
observed. 

(1) The best scores are mostly comparable among DE, GA, and 
ES, ranging from 0.830 to 0.834. Notably, when using 
setting (b), GA yields significantly lower scores, ranging 
from 0.803 to 0.817. These findings suggest that GA may 
require a greater number of generations than offspring to 
reach optimal performance. 
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(2) The median scores achieved by DE are close to the best 
scores. ES shows a similar trend, except for setting (a) and 
M=8 where the median score is 0.612 and the best score is 
0.829. In contrast, for GA, the differences between the 
median and best scores are more significant than those of DE 
and ES, particularly with setting (b). These findings again 
suggest that GA may require a greater number of generations 
than offsprings.  

(3) DE exhibits the highest worst scores of the three methods, 
whereas ES shows the smallest. This suggests that DE is 
more resilient to the influence of randomly generated initial 
solutions, enabling it to robustly search for better solutions. 
In contrast, ES appears to be more sensitive to the quality of 
the initial solutions. 

The results indicate that DE outperforms both GA and ES. 
To confirm the statistical significance of this difference, the 
author conducted a Wilcoxon signed-rank sum test, revealing 
that DE is significantly superior to both GA and ES (p=3.25E-4 
and p=1.75E-3, respectively). While GA performs better than 
ES, the difference is not statistically significant (p=0.0938). 

Fig. 3 shows the learning curves for DE, GA, and ES, 
representing the median results of 11 runs. The curves for DE, 
GA, and ES exhibit similar shapes, with most showing two 
distinct stages of learning. Initially, fitness scores remained 
relatively flat, starting at around 0.1-0.2 and persisting for 
approximately 10 evaluations. Subsequently, scores increased 
rapidly within 10-50 evaluations, reaching around 0.4-0.5. After 
this, the rate of improvement became more gradual, eventually 
reaching around 0.6. Finally, fitness scores increased rapidly 
again at around 500 evaluations, reaching values of 
approximately 0.75-0.8. 

Initially, the torque output from the MLPs was independent 
of the pendulum state, often remaining fixed at either the 
maximum (2.0) or the minimum (-2.0) values. As a result, the 

pendulum was never lifted above the horizontal position. At a 
fitness score of approximately 0.4-0.5, the MLPs were able to 
initiate swinging motion, but unable to maintain the pendulum 
in an upright position, causing it to rotate instead. Finally, when 
the fitness score reached around 0.8, the MLPs were capable of 
both initiating and maintaining pendulum swings in an upright 
position. Supplementary videos showcasing the pendulum’s 
behavior by the trained/untrained MLPs are available.4 

VII. CONCLUTION 

This study compares the performance of DE, GA, and ES in 
evolutionary reinforcement learning of multilayer perceptrons 
for balancing a pendulum. The experiment includes six 
configurations with varying numbers of hidden units in the MLP 
(8, 16, or 32) and the number of offsprings reproduced by each 
evolutionary algorithm (10 or 50). The learning curves showed 
that all algorithms trained the MLPs in two stages. Results from 
the statistical test revealed that DE exhibited statistically 
significant superiority over GA and ES. While GA performed 
better than ES, this difference was not statistically significant. 
These findings suggest that an algorithm that can balance 
exploration and exploitation adaptively may be better suited for 
evolutionary reinforcement learning of neural networks.  

To expand on this study, future work will involve evaluating 
and comparing additional evolutionary algorithms by 
implementing them on the same task.  
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(a) 10 offsprings, 500 generations. 

 
(b) 50 offsprings, 100 generations. 

Fig. 3. Learning curves for MLP with 16 hidden units. 4.  https://www.cc.kyoto-su.ac.jp/~hidehiko/csce2023/ 
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