
A Comparative Study of DE, GA and ES for
Evolutionary Reinforcement Learning of Neural

Networks in Pendulum Task
Hidehiko Okada

Faculty of Information Science and Engineering
Kyoto Sangyo University

Kyoto, Japan
hidehiko@cc.kyoto-su.ac.jp

Abstract—Reinforcement learning of neural networks requires

gradient-free algorithms as labeled training data are not available.
Evolutionary algorithms are well-suited for this purpose since they
do not rely on gradients. However, the success of training neural
networks with evolutionary algorithms is contingent on the careful
selection of appropriate algorithms, given the numerous
algorithmic variations available. In this study, the author
evaluates the efficacy of Differential Evolution (DE), Genetic
Algorithm (GA), and Evolution Strategy (ES) for the
reinforcement learning of neural networks, utilizing a pendulum
control task. The experimental results indicate that DE exhibits
statistically significant superiority over GA and ES. While GA
performs better than ES, this difference is not statistically
significant. The study highlights DE’s ability to effectively balance
between exploratory and exploitative search, adapting to the
problem at hand. Based on these findings, it is suggested that an
algorithm possessing such characteristics is better suited for
evolutionary reinforcement learning of neural networks.

Keywords—Differential Evolution, Genetic Algorithm,
Evolution Strategy, neuroevolution, reinforcement learning

I. INTRODUCTION

Evolutionary algorithms [1] provide a viable approach for
reinforcement learning of neural networks, as they do not rely
on gradients. Q-learning [2], a popular reinforcement learning
method, requires obtaining the reward r(t) for action a(t) at state
s(t), to determine the next action a(t+1), where t denotes the time
step. However, evolutionary algorithms only necessitate
evaluating the reward after the completion of an episode,
negating the need for designing appropriate rewards for all state-
action pairs. However, given the plethora of algorithmic
variations available, it is crucial to carefully select the most
appropriate algorithm for successful neural network training.
Previous work by the author [3,4] evaluated Genetic Algorithm
(GA) [5] and Evolution Strategy (ES) [6]. In this paper, the
author expands on the earlier work by evaluating Differential
Evolution (DE) [7] and comparing the performance of the three
algorithms.

II. PENDULUM TASK

In this study, the OpenAI Gym pendulum balancing task1,2
was utilized. The objective of this task is to swing the pendulum
up, maintaining it in an upright position. The author modified

the system such that the control task initiates with the pendulum
in a downward position (Fig. 1(a)) and the goal is to make and
keep the pendulum upright (Fig. 1(b)). Furthermore, the author
adjusted the system such that the control task starts with the
pendulum having zero angular velocity.

(a) Initial state:
angular

(b) Goal state:
angular

Fig. 1. OpenAI Gym pendulum balancing task1,2

Each episode of the task consists of 200 timesteps, with the
controller observing the current state and selecting the
appropriate action in each step. The observation comprises
cos(θ), sin(θ), and the angular velocity of the pendulum. The
action corresponds to the torque applied to the pendulum, with
a torque range of [-2.0, 2.0]. The controller needs to swing the
pendulum such that the force of gravity assists in increasing the
angular velocity to a level sufficient for the pendulum to climb
over.

The author defines the fitness of a neural network controller
as follows.

� ���

� ���

θ(t) represents the angular position of the pendulum at each
time step t. The initial state is such that Error(t)=|±π|/π=1,
resulting in 1-Error(t)=0. Conversely, in the goal state,
Error(t)=0/π=0, so that 1-Error(t)=1. The fitness score increases
with a decrease in Error(t) for a larger number of time steps.
Therefore, a controller performs better if it can quickly stabilize
the pendulum in the upright position and maintain it for a longer
duration.

III. NEURAL NETWORKS

The controller in this study is implemented using a three-
layered feedforward neural network, also known as a multilayer
perceptron (MLP). Fig. 2 illustrated the topology of the MLP.

1._https://gym.openai.com/envs/Pendulum-v0/
2._https://github.com/openai/gym/blob/master/gym/envs/classic_control/
2._pendulum.py

426

2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE)

979-8-3503-2759-5/23/$31.00 ©2023 IEEE
DOI 10.1109/CSCE60160.2023.00076

The hyperbolic tangent (tanh) function is adopted as the
activation function for the MLP units, which produces an output
value within the range of [-1.0, 1.0].

Fig. 2. Neural network topology in this study.

The MLP serves as the policy function, which maps the
observation of the current state to an action, i.e., action(t) =
F(observation(t)). The input layer of the MLP consists of three
units that receive the values of cos(θ), sin(θ), and the angular
velocity, respectively. The output layer has one unit that
generates the torque applied to the pendulum. To ensure that the
torque falls within the range [-2.0, 2.0], the output value is
multiplied by 2.0.

IV. EVOLUTINARY TRAINING OF NEURAL NETWORKS

The MLP depicted in Fig. 2 is composed of M+L units and
NM+ML connections, resulting in a total of M+L+NM+ML
parameters. The dimensionality of the parameter space is
denoted by D=M+L+NM+ML. The training of the MLP is
equivalent to optimizing a D-dimensional real vector,
represented by , where each corresponds
to one of the D parameters in the MLP.

Neuroevolution, the process of training neural networks
using evolutionary algorithms, has been widely researched [8].
In this study, the D-dimensional vector representing the
parameters of the MLP is optimized using either DE, GA, or ES.
These algorithms treat as a chromosome and apply
evolutionary operators to it. The fitness of is evaluated using
(1) and (2).

V. EXPERIMANT

The MLP in this study has 3 input units (N) and 1 output unit
(L). The number of hidden units (M) is set to 8, 16, or 32, which
is consistent with previous work [3,4]. Therefore, the
dimensionality of the parameter vector (D) is 41, 81, or 161 for
M=8, 16, or 32, respectively.

In this experiment, DE reproduces offsprings by the
rand/1/bin method [9]. DE adaptively balances explorative and
exploitive search to the optimization problem at hand because it
reproduces offspring solutions by utilizing the difference
between two solutions in the current population. In the initial
generation, the difference is large and becomes adaptively
smaller as the number of generations increases. On the other
hand, GA reproduces offspring through crossover and mutation,
where the blend crossover [10] for continuous chromosomes is
adopted, promoting exploration more than exploitation. ES
reproduces offspring by perturbation within a fixed step size,
promoting exploitation more than exploration. Thus, this study
compares three types of search: GA that emphasizes global

search, ES that emphasizes local search, and ES that balances
global and local searches.

Table 1 presents the hyperparameter configurations for the
algorithms, which were determined empirically in preliminary
experiments. In Table 1, setting (a) is designed for experiments
with 10 offsprings per generation and 500 generations, and
setting (b) is designed for experiments with 50 offsprings per
generation and 100 generations. The total number of fitness
evaluations was 50,000 for each trial in both cases.

TABLE I. HYPERPARAMETERS OF DE, GA AND ES

Algorithm Hyperparameter Value

DE
#Parents 5
Step size [-1.0, 1.0]

GA
α for blend crossover 0.5
#Elites (a)2 (b)10
Mutation probability 1/D

DE
Scaling factor (F) (a)0.1 (b)0.2
Crossover rate (CR) (a)0.5 (b)0.9

Each of the three algorithms was applied 11 times under the
same settings, yielding 11 fitness scores for the best solution for
each setting. With three variations of the number of hidden units
(8, 16, 32) and two variations of population sizes (10, 50), a total
of six combinations of settings were tested. Thus, 66 fitness
scores were obtained for each algorithm (11 runs × 6 settings).
These data were used to compare the performance of the three
algorithms.

VI. RESULT

Tables 2-4 presents the fitness scores obtained from the 11
runs under the same settings for DE, GA and ES, respectively.
Tables 3 and 4 are cited from previous papers by the author [3,4].

TABLE II. FITNESS SCORES BY DIFFERENTIAL EVOLUTION

(a) 10 offsprings, 500 generations.
Units Best Median Worst

8 0.832 0.825 0.608
16 0.830 0.828 0.731

32 0.832 0.824 0.796

(b) 50 offsprings, 100 generations.
Units Best Median Worst

8 0.832 0.828 0.801
16 0.832 0.822 0.812

32 0.831 0.819 0.783

TABLE III. FITNESS SCORES BY GENETIC ALGORITHM [3]

(a) 10 offsprings, 500 generations.
Units Best Median Worst

8 0.833 0.827 0.609

16 0.834 0.830 0.605

32 0.834 0.832 0.628

(b) 50 offsprings, 100 generations.
Units Best Median Worst

8 0.817 0.768 0.737

16 0.816 0.769 0.732

32 0.803 0.776 0.742

TABLE IV. FITNESS SCORES BY EVOLUTION STRATEGY [4]

(a) 10 offsprings, 500 generations.
Units Best Median Worst

8 0.829 0.612 0.520

16 0.833 0.823 0.579
32 0.832 0.831 0.613

(b) 50 offsprings, 100 generations.
Units Best Median Worst

8 0.833 0.825 0.583

16 0.833 0.832 0.612
32 0.833 0.831 0.586

By comparing these tables, the following findings are
observed.

(1) The best scores are mostly comparable among DE, GA, and
ES, ranging from 0.830 to 0.834. Notably, when using
setting (b), GA yields significantly lower scores, ranging
from 0.803 to 0.817. These findings suggest that GA may
require a greater number of generations than offspring to
reach optimal performance.

427

(2) The median scores achieved by DE are close to the best
scores. ES shows a similar trend, except for setting (a) and
M=8 where the median score is 0.612 and the best score is
0.829. In contrast, for GA, the differences between the
median and best scores are more significant than those of DE
and ES, particularly with setting (b). These findings again
suggest that GA may require a greater number of generations
than offsprings.

(3) DE exhibits the highest worst scores of the three methods,
whereas ES shows the smallest. This suggests that DE is
more resilient to the influence of randomly generated initial
solutions, enabling it to robustly search for better solutions.
In contrast, ES appears to be more sensitive to the quality of
the initial solutions.

The results indicate that DE outperforms both GA and ES.
To confirm the statistical significance of this difference, the
author conducted a Wilcoxon signed-rank sum test, revealing
that DE is significantly superior to both GA and ES (p=3.25E-4
and p=1.75E-3, respectively). While GA performs better than
ES, the difference is not statistically significant (p=0.0938).

Fig. 3 shows the learning curves for DE, GA, and ES,
representing the median results of 11 runs. The curves for DE,
GA, and ES exhibit similar shapes, with most showing two
distinct stages of learning. Initially, fitness scores remained
relatively flat, starting at around 0.1-0.2 and persisting for
approximately 10 evaluations. Subsequently, scores increased
rapidly within 10-50 evaluations, reaching around 0.4-0.5. After
this, the rate of improvement became more gradual, eventually
reaching around 0.6. Finally, fitness scores increased rapidly
again at around 500 evaluations, reaching values of
approximately 0.75-0.8.

Initially, the torque output from the MLPs was independent
of the pendulum state, often remaining fixed at either the
maximum (2.0) or the minimum (-2.0) values. As a result, the

pendulum was never lifted above the horizontal position. At a
fitness score of approximately 0.4-0.5, the MLPs were able to
initiate swinging motion, but unable to maintain the pendulum
in an upright position, causing it to rotate instead. Finally, when
the fitness score reached around 0.8, the MLPs were capable of
both initiating and maintaining pendulum swings in an upright
position. Supplementary videos showcasing the pendulum’s
behavior by the trained/untrained MLPs are available.4

VII. CONCLUTION

This study compares the performance of DE, GA, and ES in
evolutionary reinforcement learning of multilayer perceptrons
for balancing a pendulum. The experiment includes six
configurations with varying numbers of hidden units in the MLP
(8, 16, or 32) and the number of offsprings reproduced by each
evolutionary algorithm (10 or 50). The learning curves showed
that all algorithms trained the MLPs in two stages. Results from
the statistical test revealed that DE exhibited statistically
significant superiority over GA and ES. While GA performed
better than ES, this difference was not statistically significant.
These findings suggest that an algorithm that can balance
exploration and exploitation adaptively may be better suited for
evolutionary reinforcement learning of neural networks.

To expand on this study, future work will involve evaluating
and comparing additional evolutionary algorithms by
implementing them on the same task.

ACKNOWLEDGMENT

The author conducted this study as an official researcher of
Kyoto Sangyo University.

REFERENCES

[1] T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution
Strategies, Evolutionary Programming, Genetic Algorithms, Oxford
University Press, 1996.

[2] R.S. Sutton, and A.G. Barto, Reinforcement Learning: An Introduction,
2nd ed., MIT Press, 2018.

[3] H. Okada, “An evolutionary approach to reinforcement learning of neural
network controllers for pendulum tasks using genetic algorithms,” Inter.
J. of Scientific Research in Computer Science and Engineering, Vol. 11,
Issue 1, pp. 40–46, 2023.

[4] H. Okada, “Evolutionary reinforcement learning of neural network
controller for pendulum task by evolution strategy,” Int. J. of Scientific
Research in Computer Science and Engineering, Vol. 10, Issue 3, pp. 13–
18, 2022.

[5] H. P. Schwefel, “Evolution strategies: a family of non-linear optimization
techniques based on imitating some principles of organic evolution,”
Annals of Operations Research, Vol. 1, pp. 165–167, 1984.

[6] D. E. Goldberg, and J. H. Holland, “Genetic algorithms and machine
learning,” Machine Learning, Vol. 3, No. 2, pp. 95–99, 1988.

[7] R. Storn, and K. Price, “Differential evolution – a simple and efficient
heuristic for global optimization over continuous spaces,” J. of Global
Optimization, Vol. 11, pp. 341–359, 1997.

[8] F. Dario, P. Dürr, and C. Mattiussi. “Neuroevolution: from architectures
to learning.” Evolutionary Intelligence, Vol. 1, pp. 47–62, 2008.

[9] R. Storn, K. Price, and J. A. Lampinen, Differential Evolution – A
Practical Approach to Global Optimization, Springer, 2005.

[10] L. J. Eshelman, and J. D. Schaffer, “Real-coded genetic algorithms and
interval-schemata,” Foundations of Genetic Algorithms, Vol. 2, pp.187–
202, 1993.

(a) 10 offsprings, 500 generations.

(b) 50 offsprings, 100 generations.

Fig. 3. Learning curves for MLP with 16 hidden units. 4. https://www.cc.kyoto-su.ac.jp/~hidehiko/csce2023/

428

