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Abstract—The rapid growth of population and urbanization,
combined with transformative technological advancements aris-
ing from the industrial revolution, have resulted in a divergence
in living standards and consumption patterns. Consequently, a
substantial increase in waste generation occurred compared with
earlier times. This has given rise to severe air, water, and soil
pollution, posing a grave threat to all forms of life. Moreover,
it has accelerated the depletion of natural resources and has
exacerbated the challenges associated with climate change. Given
these circumstances, effective classification of recyclable waste
is a crucial objective for humanity. To accomplish this, the
utilization of Deep Learning models has proven highly beneficial.
In order to achieve this objective, we conducted a thorough
investigation where we evaluated prominent Deep Learning mod-
els to determine the most effective approach. The DenseNet121,
MobileNet, ResNet50, and Xception architectures were employed
in this study using the TrashNet dataset. After conducting the
experiments, we found that the DenseNet121 model, fine-tuned
specifically for this task, yielded the best results with a test
accuracy rate of 95%.

Index Terms—Trash Classification, Image Recognition, Deep
learning, Convolutional Neural Networks

I. INTRODUCTION

The combination of population growth, urbanization, and

technological advancements resulting from the industrial rev-

olution has led to a significant increase in waste generation

compared to previous times. This has caused a differentiation

in living standards and consumption patterns. However, this

surge in waste production has also led to detrimental effects on

the environment, including air, water, and soil pollution. These

environmental issues pose a threat to all living organisms and

contribute to the depletion of natural resources and to climate

change.

The fact that waste is not used in the recycling and recovery

processes causes serious economic and energy losses. The

method used today in the selection process of recycled materi-

als is based on the decomposition of these materials manually.

This separation is sometimes performed by separating the

waste bins of the recycled materials, and sometimes the

garbage is separated one by one by the people in charge. This

situation does not ensure that we are at the desired point in

saving recycled materials. Great economic loss is experienced

because of people’s unconscious behavior or carelessness.

• By recycling 1 ton of waste paper, we can prevent the

cutting down of 17 trees and save up to 12,400 m3 of

greenhouse gas emissions. Additionally, recycling paper helps

save 2.4 m3 of waste storage space.

• Metal and plastic recovery can lead to significant energy

savings, with up to 95% energy reduction compared to new

production methods.

• Recycling 1 ton of glass can save approximately 100 liters

of oil, contributing to conservation efforts and reducing the

reliance on fossil fuel resources.

• Waste glass can be recycled and transformed back into

glass products. Similarly, plastics have the potential to be

repurposed into various materials, including fibers and filling

materials. Additionally, waste metals can be recycled and used

to produce new metal products.

• Organic waste can be composted to produce nutrient-

rich compost, then it can be used to improve soil fertility

and productivity. By utilizing compost obtained from organic

waste, we can improve the health and productivity of our soils.

In light of this information, in our country and in the

world, it is necessary to use a technology that is beyond the

traditional methods to prevent waste by detecting recyclable

materials, to use resources efficiently, reduce the amount of

waste generated, and establish more effective waste collection

systems.

Setting up a model definition or a machine learning sys-

tem using traditional machine learning techniques is a time-

consuming task. These techniques often require expert assis-

tance to preprocess raw data before they can be effectively

utilized. However, deep learning has made significant advance-

ments in addressing this issue. Deep neural networks have the

capability to directly process raw data, enabling the learning

process to be performed on the original, unprocessed data.
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Deep Learning is a category of machine learning that

employs artificial neural networks, drawing inspiration from

the functioning of our brains [1]. It enables computational

models to understand and extract meaningful representations

from complex datasets by incorporating multiple layers of

processing. By utilizing a rewriting algorithm, Deep Learning

allows machines to adjust the internal parameters of each

layer’s representation based on the information derived from

preceding layers.

The main objective of Deep Learning is to explore and

comprehend the intricate patterns and relationships present in

large datasets. This is achieved by iteratively modifying the

internal parameters to improve the accuracy and efficiency of

the model’s predictions. By leveraging the hierarchical nature

of neural networks, Deep Learning models can learn and

extract increasingly abstract features and representations from

the data.

In this study, we utilized datasets containing images of indi-

vidual objects set against a clear white background. Employing

Deep Learning techniques, we aimed to classify these images

into six distinct categories representing different types of

rubbish. By leveraging the power of image-based predictions,

we can accurately determine the category to which an object

belongs based solely on its image representation [2], [3].

Although there have been numerous image classification

projects utilizing neural networks in recent years, there is a

dearth of research specifically focusing on Rubbish classifi-

cation using neural networks. Therefore, our objective was to

contribute to the field of recycling by employing computer

vision and Deep Learning techniques to improve the process

of sorting out recyclable materials. In our previous work, we

used the same dataset and applied DenseNet121, Xception,

MobileNet, ResNet50 models [4]. In this study, we applied

various data augmentation techniques and explored different

deep learning models. Additionally, we experimented with

different numbers of epochs and made modifications to the

hyperparameters of the deep learning models, which differed

from our previous research.

The dataset utilized in our study was obtained from research

conducted by students at Stanford University [2].

II. LITERATURE REVIEW

In 2016, Gary Thung and Mindy Yang conducted a project

on trash sorting [5], which served as the foundation for our

own project. Thung and Yang created the TrashNet dataset,

which we utilized in our project. Both projects shared a

common goal: to classify single pieces of garbage or recy-

clables into six different categories that includes glass, plastic,

cardboard, metal, paper, and trash materials.

Thung and Yang used Support Vector Machine and Con-

volutional Neural Networks (CNN) techniques separately and

compared their results. They developed the eleven-layer CNN

architecture, adjusting the number of filters in certain convo-

lutional layers to address computational limitations. Addition-

ally, they utilized methodologies including learning rate decay,

Kaiming weight initialization and L2 regularization.

However, their results with the CNN approach were not

satisfactory. While the SVM approach attained a testing ac-

curacy of 63%, the CNN method only managed to reach a

testing accuracy of 22%. Thung and Yang attributed this lower

performance to suboptimal hyperparameters, which hindered

the ability of the CNN to learn effectively.

Another paper by Olugboja Adedeji and Zenghui Wang [6]

introduces an intelligent waste material classification system.

The system utilizes a pretrained 50-layer residual network

(ResNet-50) Convolutional Neural Network (CNN) model as

a feature extractor, along with Support Vector Machine (SVM)

for waste classification into different categories such as glass,

metal, paper, and plastic.

The proposed system was evaluated using the trash image

dataset developed by Gary Thung and Mindy Yang. It achieved

an impressive accuracy of 87% on this dataset. By employing

this waste material classification system, the separation process

of waste can be made faster and more intelligent, reducing or

eliminating the need for human involvement.

In 2020, Maoguo Shi, Qinyue Gu, and Yujie He conducted a

project [7] where they focused on utilizing Convolutional Neu-

ral Networks (CNN) to achieve their objectives. They explored

several well-known CNN architectures at the early stages of

their research. Eventually, they arrived at a modified version

of the AlexNet architecture by removing two layers. They

conducted experiments using this modified architecture and

incorporated techniques such as dropout, data augmentation,

and learning rate decay.

In their study, Shi, Gu, and He experimented with two

classifiers, Softmax and SVM, as the final layer of their model

structure. They achieved 79.94% as their highest test accuracy

using a combination of with partial data augmentation and the

SVM classifier.

A. What will be our originality/contribution/difference?

The all papers/projects are done by using old convolutional

neural network (CNN) models. For example, ResNet152 and

Inception V3. While some of the papers were focused on mod-

ifying the structure of established architectures and conducting

training from the ground up. Some of them focused on transfer

learning (pre-trained) models. In the end of day, they all got

the result (test accuracy) from their models. At this point,

our aim is to exceed the success of these academic papers.

We will use up-to-date pretrained image classification models.

For example , ResNet50, MobileNet and up-to-date versions

of DenseNet. Then, we will apply the our fine tuning on this

pretrained models. In this way, we will fine tuning on a general

purpose pretrained model and make it serviceable for our own

project. In this manner, we aim to achieve more success from

other works.

III. DEEP LEARNING MODELS

In this section we explain the details of transformer archi-

tectures, deep learning models used.
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A. MobileNet

The MobileNet model incorporates depth-wise separable

convolutions, initially utilized in the Inception model, to

reduce the computational overhead in the early layers. The

architecture of MobileNet revolves around depth-wise sepa-

rable convolutions, except for the first layer, which employs

full convolution. Following the full convolution, MobileNet

applies depth-wise separable convolution. This design allows

high accuracy rates to be achieved while using a minimal

number of hyperparameters. MobileNet has proven to be a

valuable model owing to its ability to be trained faster and

with fewer resources. [8].

B. Xception

Xception, also known as Extreme Inception, is a deep learn-

ing model recommended by the Google research team. It draws

inspiration from the Inception architecture but introduces a

novel approach to feature extraction using depth-wise separa-

ble convolutions. By leveraging depth-wise separable convolu-

tions, Xception enhances the learning capacity of the network

while reducing the computational complexity. It employs a

deep architecture composed of independently processed depth-

wise separable convolution blocks, thereby enabling more

effective feature extraction. The Xception model serves as a

powerful tool for tasks such as complex image classification,

object recognition, and various computer vision problems,

thereby achieving high accuracy rates. Moreover, it accelerates

the training process and utilizes resources more efficiently

owing to the reduced number of hyperparameters and com-

putational requirements. Xception is widely recognized as a

robust deep learning model for a range of computer vision

applications. [9].

C. Densely Connected Convolutional Networks

Densely Connected Convolutional Networks (DenseNet) are

deep learning architectures that introduce dense connections

between the layers. As proposed by Huang et al., DenseNet

aims addressing the vanishing gradient problem and by pro-

moting a better information transmission throughout the net-

work. In DenseNet, each layer receives direct inputs from all

the preceding layers, resulting in densely connected feature

maps. This design fosters feature reuse and facilitates gradient

propagation, thereby enabling deeper architectures with fewer

parameters. DenseNet consists of multiple dense blocks, where

each block consists of a series of convolutional layers, fol-

lowed by concatenation of feature maps. By exploiting dense

connections, DenseNet were able to achieve state-of-the-art

performance on different computer vision tasks while being

more parameter efficient. It also encourages feature extraction

from multiple abstraction levels, leading to richer represen-

tations and improved model accuracy. DenseNet has gained

significant attention and is widely used in the deep learning

community owing to its effectiveness and interoperability.

[10].

D. ResNet50

ResNet50, a Residual Network with 50 layers, is a deep

learning architecture that revolutionizes image classification

tasks. Introduced by He et al., ResNet50 addresses the chal-

lenge of training very deep neural networks by introducing

residual connections. The key innovation of ResNet50 lies

in its residual blocks, which enable the network to learn

residual mappings rather than explicitly trying to fit the desired

underlying mapping. These residual connections allow for the

direct flow of information from one layer to another, mitigating

the vanishing gradient problem and enabling the training of

significantly deeper networks. ResNet50 consists of multiple

residual blocks, where each block contains a set of convolu-

tional layers along with skip connections that add the original

input to the block output. This helps to preserve valuable

information during the forward pass. With its deep architecture

and skip connections, ResNet50 achieves remarkable accuracy

in image classification tasks, even surpassing the human-level

performance in some cases. It has become a popular choice

for various computer vision tasks and serves as a foundation

for many state-of-the-art deep learning models. [11].

IV. EXPERIMENTAL RESULTS

This section provides a comprehensive overview of the ex-

periments conducted, including the methodologies employed,

the results obtained, and how the data preprocessing im-

plemented. Additionally, the dataset used in the study is

described, along with the methods employed to obtain vector

representations of the dataset.

The experiments took place on a computer powered by the

macOS operating system, housing an M1 processor with 16GB

of RAM.

A. Dataset

Dataset consists of photographs taken by students at Stan-

ford using a white banner in the background [3]. 6 of the

photos taken from the dataset are shown in the figure below.

One photograph of each class and a total of 6 photographs

were chosen to represent 6 classes. The dataset contains

images of recycled objects as six classes. These are: glass,

paper, cardboard, plastic, metal and trash.

Currently there are 2527 data (images) in the dataset:

• 501 glass

• 594 papers

• 403 cartons

• 482 plastic

• 410 metals

• 137 trash

In this study, 70% of the total images were employed for

training, 17% were allocated for testing, and the remaining

13% were designated for validation.

B. Results

In this study we used Google Colab, Keras library with

TensorFlow. We run experiments using Google GPU services.
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Fig. 1. Example Images [11]

We conducted fine-tuning experiments on several models by

adjusting the pretrained model’s weights using the ImageNet

dataset. Following an initial step of pre-training the ImageNet

trained weights that contains the model. Fine-tuning was

carried out utilizing stochastic gradient descent alongside a

Nesterov momentum of 0.9, while the learning rate of 0.0001

was applied specifically to DenseNet121. This was because

we needed to achieve our aim. During the training process of

all models, we employed basic data augmentation techniques,

including vertical and horizontal flips, as well as 15° rotations.

We utilized the Adam optimizer, with a learning established

at 0.001.

During the training experiments on the DenseNet121 mod-

els, a batch size of 8 was utilized. For the remaining training

experiments, a batch size of 32 was employed. Additionally,

for all of our deep learning models (DenseNet121, Xception,

MobileNet, ResNet50), the input size was set to 224 × 224.

For our experiments, we trained the models from scratch us-

ing dedicated training data, and incorporated validation during

the training process. The weights obtained from this training

were used to conduct the experiments. The details of our

experiments along with the corresponding results are presented

in Figure 2. This allowed us to showcase the performance

and outcomes of our models in a clear and concise manner,

thereby providing valuable insights into the effectiveness and

capabilities of our approach.

Fig. 2. Fine Tuned Models Results

When we are working on the training process of all the

models, we applied straightforward data augmentation tech-

niques. The motivation behind the implementation of data

augmentation was the limited availability of images in the

dataset. While we observed some instances of overfitting

owing to data augmentation in certain experiments, overall,

data augmentation proved to be highly effective in enhancing

the performance of the models. It helped diversify the training

samples, enabling the models to learn robust features and

generalize better to unseen data. The careful application of

data augmentation plays a important role in improving the

overall performance and mitigating the challenges posed by

the limited dataset size.

The three algorithms that achieved the highest success were

MobileNet, Xception, and DenseNet121.

MobileNet model was applied to 100 epochs. We achieved

89% test accuracy. When we are working on the analysis of the

result, we realized that the validation test results were stable. It

was realy close to our aim (93%) but, we could not reach the

93by using the MobileNet model. We tried some other fine-

tuning and we tried to performed training after pre-training

with some epochs; however, this did not work.

The accuracy graph for the fine-tuned MobileNet model is

shown in Figure 3.

Fig. 3. Fine-tuned MobilNet model’s Test Accuracy: 94%

The Xception model was trained for 100 epochs, resulting in

a test accuracy of 83%. Upon analyzing the accuracy results,

we observed that the validation accuracy continued to improve

beyond the 70th epoch. Based on this evaluation, we decided

to extend the training phase by an additional 100 epochs

in the subsequent experiment. However, despite the extended

training, we were unable to achieve the desired results.

The accuracy graph for the fine-tuned Xception model is

shown in Figure 4.

We performed our last experiment using Densenet121

model. We conducted the training utilizing 100 epochs. We

reached the 89% accuracy.. We decided to do pretraining with

10 epochs. Contrary to the Xception model, our test accuracy
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Fig. 4. Fine-tuned Xception model’s test accuracy: 94%

increased to 95% when this operation was performed. As a

result, we achieved 95% test accuracy with DenseNet121 10

(pretraining) + 100 epochs. We achieved the best test results

via fine-tuning the models.
Fine-tuned DenseNet121 model were shown in Figure 5.

Fig. 5. Fine-tuned DenseNet121 model’s Test Accuracy: 94%

Fig. 6. Comparison of Deep Learning Models

V. DISCUSSIONS AND CONCLUSION

This study involved experimentation using well-known

CNN models. The results of these experiments demonstrate

varying levels of test accuracy for the deep learning mod-

els used. Initially, our project plan encompassed the use of

three distinct models. However, these models do not meet

the desired level of anticipated accuracy. Consequently, we

incorporated two additional models, namely, Xception and

DenseNet121, into our research framework.

The performances of the various models were evaluated

in terms of test accuracy during the course of the study.

The ResNet50 model achieved a test accuracy of 76% after

100 epochs, which, although reasonable, did not meet the

desired level of accuracy. After 100 epochs, the MobileNet

model attained the highest test accuracy of 89%, which still

did not satisfy our objectives. Consequently, we introduce

two additional models for our experiments. Subsequently, the

Xception model exhibited an improved performance with a test

accuracy of 83% after 100 epochs. However, the DenseNet121

model outperformed the others, reaching a remarkable test

accuracy of 95% after 100 epochs. The detailed outcomes of

the fine-tuned models are shown in Figure 2 for reference.

The fine-tuned Densenet-121 model was the most successful

in terms of the test accuracy. During the optimization process,

it was observed that the Adam optimizer consistently yielded

higher test accuracy than the other options. Consequently,

the Adam optimizer was utilized across all training sessions,

ensuring consistent and improved performance throughout the

experiments.

The results obtained from the experiments highlight the

potential of deep learning algorithms for classifying recyclable

waste. Through a series of experiments on known deep-

learning models, we explored their suitability for this purpose.

Nevertheless, it should be noted that when applied to real-time

systems, the accuracy of deep learning models for classifying

recyclable waste may be compromised owing to factors such

as limited data availability and challenges associated with

inconsistent backgrounds in real-world images.
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