
Digital Rubber Duck: Leveraging Large Language
Models for Extreme Programming

Timothy Elvira, Tyler Thomas Procko, Juan Ortiz Couder, Omar Ochoa

Department of Electrical Engineering and Computer Science
Embry-Riddle Aeronautical University

Daytona Beach, Florida, United States of America
{elvirat, prockot, ortizcoj}@my.erau.edu, ochoao@erau.edu

Abstract—The recent prevalence of Large Language
models (LLMs), e.g., GPT-3.5 and GPT-4, has brought
about a new age of man-computer symbiosis, where
LLMs are employed for a litany of creative,
constructive, scientific, or otherwise content-
generative tasks, e.g., as general chatbot assistants,
writing editors, digital subject matter experts,
programming consultants, and so on. Of interest to
software engineers is the concept of “rubber duck
debugging”, which is the act of expressing code, line-
by-line, in natural language, to an inanimate object,
e.g., a rubber duck, for the purpose of elucidating
potential issues that can then be corrected. In this
paper, we detail a workflow process that leverages the
concept of rubber duck debugging, replacing the duck
with a capable LLM, e.g., GPT-4. We call it Digital
Rubber Duck Programming. Furthermore, the
Extreme Programming (XP) method, an
implementation of the Agile paradigm, is considered
as easily integrated with the proposed workflow, as XP
is performed in pairs (much like the modern software
engineer works in pairwise fashion with an LLM) and
because XP places emphasis on performing extensive
code reviews and unit testing all code, which capable
LLMs like GPT-4 can facilitate.

Keywords—Software Engineering, Code Refactoring,
Walkthroughs, Extreme Programmaing, GPT-4,
ChatGPT

Paper Type – “Regular research Paper”

I. INTRODUCTION
ChatGPT is a revolutionary Large Language Model
(LLM) containing billions of parameters [1, 2, 3].
OpenAI’s state-of-the-art model can few-shot and even
zero-shot learn to understand and generate from a user’s
query [4]. Few-shot and zero-shot learning is the ability to
generalize learned information into a new context. This
new domain may or may not be in the original training
dataset [3]. The few- and zero-shot learning ability of
ChatGPT allows the model to be used in a variety of
domains. The model’s domain agnosticism, paired with
its advanced natural language understanding and
generation, establishes ChatGPT as a state-of-the-art

technology. Moreover, ChatGPT differs from other LLMs
due to its training set also containing source code,
empowering the model to generate code snippets in a
plethora of coding languages. The unique combination of
code and natural language situates ChatGPT as a possible
Software Engineering (SWE) tool for computer scientists
and software engineers. Many software engineers utilize
the Agile lifecycle model to produce production-quality
software within industry [5]. One such method is Extreme
Programming (XP), or the production of software in pairs
of engineers [6]. This paper proposes that ChatGPT, with
its powerful code and natural language understanding, can
act as a virtual, hyper-intelligent, ever-present
programming partner to a software engineer using XP.
This paper examines scenarios in which GPT is used in a
few XP activities like code refactoring, code
walkthroughs, and coverage testing.

The organization of this paper is as follows. Section
II outlines the background knowledge required to
understand the content related to XP and LLMs. Section
III presents activities, prompts, and results from various
XP activities. Section IV presents an overview of similar
work that focuses on leveraging GPT for SWE or related
activities. Finally, section V contains the authors’
suggested future work and concluding statements.

II. BACKGROUND

A. Software Engineering
Software engineering as a discipline has been extant since
at least the late 1950s, with discussions on software
process models (e.g., Waterfall) occurring since the 1970s
[7, 8, 9]. Under the traditional lifecycle model, software
development requires a period of deliberation and
documentation before any development begins. This
traditional method of development was process-oriented,
with little emphasis given to teams and their formation
[10]. By its nature of up-front deliberation, the traditional
development life cycle is extremely inflexible regarding
change, e.g., modified customer requirements.

The Agile approach aimed to mitigate the rigidity of
Waterfall by being customer-centric and adaptable to
change. The Agile approach was conceived by a small
group of expert software practitioners, who prefer
“individuals and interactions over processes and tools;

295

2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE)

979-8-3503-2759-5/23/$31.00 ©2023 IEEE
DOI 10.1109/CSCE60160.2023.00051

working software over comprehensive documentation;
customer collaboration over contract negotiation; and
responding to change over following a plan” [11].
Because of the lack of life cycle structure in Agile, there
is a higher need for effective working teams. Extreme
Programming (XP) is the most widely used Agile method,
sharing the values espoused by the Agile Manifesto for
Software Development. XP goes further to specify a
simple set of practices, most notably, pair programming,
in which two people write code together at the same
workstation [6]. Pair programming with XP has been
shown to improve the grades of student programmers, and
the quality of student code, because of the benefits of
actively walking through written code with another
individual [12].

The three main activities covered in this paper are
walkthroughs, method extraction & code refactoring, and
code coverage & testing.

Walkthroughs:
Walkthroughs, a type of code review, are an SWE activity
where engineers review and step through a code snippet
to ensure it is correct and meets specifications [13].
During walkthroughs, reviewers will examine the code to
find deviations from these specifications. Code
walkthroughs have evolved over the years, including tools
to assist reviewers in finding code errors, and identifying
invalid functionality against specifications [14].
Originally, in the 1960s, walkthroughs were performed by
someone paraphrasing and presenting logical algorithms
aloud to others [15]. The intended purpose was not to find
errors, but to train newcomers and introduce them to the
system. Overtime, walkthroughs became useful in finding
code defects, and so the goal changed from a training
mechanism to a quality assurance activity. Currently,
walkthroughs have adapted to fast-paced life cycles like
Agile by following a lightweight framework [14]. This
framework can be summarized in five key steps: creating,
previewing, commenting, addressing feedback, and
approving [14].

Code Review Flow Action
Creating Author modifies code
Previewing Author visualizes code changes
Commenting Reviewers comment on changes
Addressing Feedback Author address comments
Approving Reviewers accept or reject authors

changes w.r.t comments.
Table 1. Steps to a code walkthrough

Method Extraction and Code refactoring:
Method extraction is a well-known and useful technique
in wrangling large classes or methods [16]. Method
extraction is a form of code refactoring that aims at
making code cleaner and more readable by taking parts of
code and refactoring them into a method. Method
extraction is particularly difficult due to the need to
preserve semantics and code behavior [17]. Typically, XP

builds on the practice of refactoring by adding the benefit
of a peer to ensure refactoring is done sensibly and in
compliance with the specifications [18].

Method extraction falls under general code
refactoring. General code refactoring operates on
changing code to avoid poor coding designs, called code-
smells [19]. Ideally, the goal of refactoring is to ensure a
high-quality product is delivered to the customer. Quality
is increased when code is highly cohesive and rarely
coupled. Cohesion is code, either methods or classes,
working together while coupling is code that is tightly
bound together [19]. Because XP enforces multi-
perspective and continual design, code refactoring is a
natural activity in XP [20]. A peer ensures that the correct
refactoring method is addressing a code smell in XP.

Code Coverage & Testing:
Code coverage is a software testing metric that determines
the number of lines of code that are validated by a test
procedure, which helps to analyze how comprehensive
some software is verified [21].

B. Machine Learning
With the advent of Machine Learning (ML), various
software engineering activities have been integrated with
ML systems to assist the software developer. For instance,
some of the earliest uses of ML in the Software
Development Life Cycle (SDLC) include estimating
development effort, classifying fault-prone software
modules, modularizing source code and generating
software test data [22].

The advancement of neural networks and particular
activation functions, e.g., ReLU [23], in combination with
expandingly powerful graphics processing units (GPUs) in
computers, allowed neural networks (which, in the 1990s,
were relatively shallow) to become deeper, i.e., Deep
Learning, incorporating more layers and complex
architectures [24, 25, 26].

In 2017, the groundbreaking neural network
architecture, the Transformer, which uses a novel self-
attention algorithm, was proposed [27]. Based upon the
Transformer, contemporary, pre-trained LLMs with
billions of parameters, like OpenAI’s GPT series [1, 2, 3],
Google’s Fine-tuned Language Net (FLAN) [28] and
Bidirectional Encoder Representations from
Transformers (BERT) [29] models, and Facebook’s
Bidirectional and Auto-Regressive Transformers (BART)
[30] and Large Language Model Meta AI (LLaMA) [31]
models are used to power applications, provide insights to
inquirers and assist in a variety of tasks.

Based on transformers, the code generation tool
Intellicode Compose is an add-on for Integrated
Development Environments (IDEs), e.g., Visual Studio
Code, used by developers as a programming assistant
[32]. Released in 2021 by OpenAI, Codex powers

296

GitHub’s Copilot. GitHub Copilit is described as an “AI
pair programmer”, that can integrate with certain IDEs,
providing suggestions while coding [33]. GitHub Copilot
has been evaluated as being useful for simpler software
development tasks, where the human developer is needed
finalize its output [34, 35]. While GitHub Copilot is a
useful tool for software developers, the quality of its
generated code depends heavily on the conciseness and
correctness of the natural language prompts provided by
the developer [36]. In 2022, OpenAI deprecated the
Codex model, because GPT-3 and GPT-3.5 (ChatGPT)
performed exceptionally well at coding tasks, as well as
various other tasks.

Since mid-2022, LLMs for writing code have been
discussed and shown to be quite useful for certain
programming activities, e.g., autocompleting redundant
portions of code, refactoring code, writing simple
functions, etc. [37]. In the early months of 2023, LLM
development accelerated rapidly, with ChatGPT (GPT-
3.5 and GPT-4) becoming extremely capable
programming assistants available to the mass public
through a simple web interface. Building on GPT-3.5,
GPT-4 has advanced reasoning capabilities and increased
attention, in addition to having the distinction as being the
first multimodal model in mass use, as it can accept image
and text inputs, responding in text [38]. GPT has even
recently been used to generate programming exercises and
explanations for teaching students code [39].

III. DIGITAL XP ACTIVITIES
Our approach is to use ChatGPT in XP activities, taking
note of input queries and ChatGPT’s output. To illustrate
this approach, consider the following simple snippet as an
example of an engineer developing a piece of software
alongside ChatGPT. This code snippet is in the Python
language and uses variables, conditionals, and loops. The

goal and meaning of the code are arbitrary. Fig. 1 is the
code snippet used in all the scenarios. The following
sections use this code sample for ChatGPT’s application
in the XP activities. This paper presents an approach to
developing workflows that incorporates ChatGPT into
software activities.

A. Walkthroughs
ChatGPT can conduct code walkthroughs to some

extent. The query for walkthroughs is a simple statement
of “Can you perform a walkthrough of this code” with the
code snippet attached. As seen in Fig. 2, ChatGPT steps
through and reads the snippet, shown in Fig. 1, line-by-
line. For each line, ChatGPT provides a small
summarization of code and the logical progression of
variables. The generated transcript reads similarly to the
original code walkthrough process, where an engineer
would read aloud their logic. The last paragraph of the
generated explanation is critical as ChatGPT
hypothetically runs the code to find the behavior of the
snippet which is printing ‘1’ five times. ChatGPT’s code
walkthrough operates closely to the original walkthrough
process rather than the steps found in Sadowski et al.’s
work. This is not to say that ChatGPT cannot adhere to
those five walkthrough steps but when simply prompting
about a code walkthrough, ChatGPT resorts to just
logically stepping through code. Adjusting the query by
providing further walkthrough steps might enforce the
model to generate a response that adheres to the five
walkthrough steps. Example prompts to adhere GPT to the
five walkthrough steps can be found in Table 2:

Code review flow Prompt
Creating � Refactor method X

� Method extract lines 34-39
Previewing � From these two code snippets, detail

the difference between them
Commenting � From these two code snippets,

comment on the different [coding
styles, execution, output, behavioral
changes]

� Do the code changes meet these
given requirements?

Addressing
Feedback

� Can you address if the additional
changes meet given requirements

Approving � Is this code snippet fulfilled given X
criteria?

� Is this code acceptable for
production?

Table 2: Prompts to use for adhering ChatGPT to follow a structured
walkthrough.

Fig. 1. The sample code snippet used in each SWE activity.

297

More prompt testing is required to learn the full extent of
ChatGPT’s capabilities in conducting code walkthroughs;
however, it currently produces a modest and useful
walkthrough as a peer in XP without prompting for
specific structured walkthroughs.

B. Method Extraction & General Code Refactoring
Fig. 3 & Fig. 4 display GPT’s capabilities in method
extraction. The results of Fig. 3 are from the prompt “Can
you extract for the first if/else pair?” ChatGPT created a
new method named calculate_bar which is the original if-
else statement and returns bar. Fig. 4 extracts more

Fig. 2. ChatGPT’s response to “Can you perform a walkthrough of this code?”

Prompt: Can you extract a method for the first if/else
pair?

 Prompt: Could you extract more methods from the calculate
bar method?

Fig. 3. Generated code snippet from above prompt.

Fig. 4. Generated code snippet from above prompt.

298

methods from the conditionals, named
calculate_bar_floor and calculate_bar_mod. An
alarming problem from this method extraction is
ChatGPT’s method naming capabilities. The method
name calculate_bar_floor is not reflective of the behavior
of the method. The method multiplies foo by ten and
divides by three, yet its function name contains floor and
not the behavior. This is especially interesting given that
calculate_bar_mod contains a modulo function.
ChatGPT’s naming conventions might not be suitable for
developers to rely on if they are not consistent. While this
erroneous result might be related to the prompt, more
experimentation with ChatGPT’s method extraction
capabilities is required.

While our experiment is not the utmost conclusive in
terms of exploring GPT’s capabilities, it can be seen as a
seed to further explore the capability. Fig. 5 shows
ChatGPT’s capabilities when asked to refactor code. The
prompt is “Can you refactor some lines?” ChatGPT
focused on maintaining behavior while also making the
code more concise. ChatGPT combines the if/else block
that calculates bar using a ternary operator. This ternary
operator checks if foo is less than five, if it is, then it
calculates bar using the floor function and the formula
(foo * 10) / 3. Otherwise, the calculation becomes foo
modulo 2. ChatGPT also combines the two for-loops
using a ternary operator “if/else” which checks if foo is
greater than bar. The operator loops accordingly to the
result of the ternary operator. The code is certainly more
concise than the original code snippet; however, ChatGPT
does not inherently address code smells when refactoring
code. This is critical to acknowledge because further
examination of its knowledge of code smells and their
respective refactoring might be required if that capability
is desired when using it as an XP partner.

C. Code Coverage & Testing
When prompted with the question, “For this code, do
coverage testing: [Attached coverage testing]”, ChatGPT
generated the test suite displayed in Fig. 8 along with an
explanation of the reasonings for each of the test cases.
Interestingly, ChatGPT defaults to branch coverage
testing, or testing the conditionals, when asked to do
coverage testing. Following the explanation of the tests,
ChatGPT offers different ways to run the tests. Once the
test suite was proposed, ChatGPT was prompted to
generate the code required for those test cases, which can
be seen in Fig. 6. The name of the method remains

constant to the one ChatGPT suggested when generating
the test suite so it is easy to trace when each of those tests
would be applicable. In addition, ChatGPT predicts what
the output will be. Fig. 7 displays the results for the

generated code coverage test suites. While defaulting to
branch coverage testing, ChatGPT is aware of different
types of coverage testing such as statement coverage and
Modified Decision/Decision Coverage (MC/DC) testing.
ChatGPT also provides a small summary and a general
rationale for each test. ChatGPT provides a code suite to
test each test case for the prompts/responses in Fig. 8.
ChatGPT’s ability to provide a test suite for different
types of coverage testing, at an engineer’s disposal, makes
it an exemplary tool for XP and SWE in general.

Fig. 6. The sample code generated by ChatGPT for the code
coverage testing.

Fig. 7. Results for the execution of the test suites.

Fig. 5. The refactored code generated by ChatGPT.

299

IV. RELATED WORK
This section will discuss related work that leverages GPT
into other facets of SWE outside of XP. This includes
using it as a tool for active programming, and activities in
the later stages of the SDLC, e.g., software testing.

Current research with GPT is still in the stage of novelty,
even more so in the context of SWE. While the concept of
using GPT as a digital rubber duck is unique to this paper,
there are a few research efforts that build upon similar
themes. White et al. compiles ChatGPT prompts which
are used for specific SWE engineering activities [40]. The

Prompt Response

(1) For this code, do coverage
testing: [Attached coverage

testing]

(2) Can you do statement

coverage for the same code
snippet?

(3) Can you do MC/DC for the

same code snippet?

Fig. 8. Test cases generated to cover all possible paths of code. From top to bottom, (1) general prompting for coverage testing, (2) statement
coverage testing, and (3) MC/DC coverage testing.

300

authors organize their prompt patterns into four types of
software activities: requirements elicitation, system
design and simulation, code quality, and refactoring.
Table 1 shows the prompt patterns for each software
activity. The paper shows possible prompts for each
pattern.

Software
Activity

GPT prompt pattern

Requirements
elicitation

� Requirements Simulator
� Specification disambiguation

� Change request Simulation
System design
and Simulation

� API generator
� API simulator
� Few-Shot example generator.
� Domain-Specific Language

(DSL) Creation

� Architectural possibilities
Code quality � Code Clustering

� Intermediate Abstraction
� Principled Code

� Hidden Assumptions
Refactoring � Pseudo-code Refactoring

� Data-guided Refactoring
Table 3. The organization of prompt patterns for using GPT in SWE

activities [41].

The authors supply each prompt pattern with a
detailed explanation of their prompt & structure stemming
from a software engineer’s rationale. They structure their
prompts by providing a few example implementations
that will result in the desired SWE activity when
prompting ChatGPT. An example is shown by providing
the paper’s specification disambiguation pattern [40]:

Specification Disambiguation Pattern:
1. Within this scope
2. Consider these requirements or specifications
3. Point out any areas of ambiguity or potentially
unintended outcomes

When prompting, a user should use these prompt
patterns to disambiguate or identify ambiguous
requirements specifications. These patterns are simply
starting points and should be used as seeds for more
complex prompts [40].

One of the core capabilities of ChatGPT is its ability
to understand and produce source code. The previous
paper has four prompt patterns related to code quality.
Surameery & Shakor expand upon using GPT for
resolving code by using it to identify and debug code [41].
While brief, Surameery & Shakor overview GPT’s
debugging capabilities such as debugging assistance, bug
prediction, and bug explanation. The author’s compare
GPT’s debugging abilities with common debugging tools
and examines capability metrics between them. These
comparisons are divided into different categories: cost,
speed, accuracy, customizability, ease of use, integration
with existing tools, and scalability. ChatGPT performed

better than the other tools when it comes to cost, speed,
ease of use, and scalability. ChatGPT is cheaper than
traditional debugging tools, it is also faster than the other
tools when providing bug explanations can provide bug
explanations, it is also easier to use as it has natural
language generation capabilities making it easier to
understand its results and can be used to debug code at
scale in comparison to other debugging tools that might
struggle with larger datasets. However, traditional
debugging tools offer more customization options, are
easier to integrate with other tools and can be more
accurate than ChatGPT.

A practical representation of bug reporting was
performed by Sobania et al. [42]. Here, several LLMs
were tasked with identifying, and suggesting fixes to a
series of benchmark problems in codes and report if there
was any fix required. These problems could vary from
classification metrics, to sorting algorithms
implementation or calculations. The results of LLMs were
compared to the ones from automated program repair
methods. The results showed that LLMs were capable of
outperforming automated repair tools, achieving almost
50% of bugs fixed. When in combination with some
LLMs dialogue option, the performance was boosted to
almost 78%. This showed that human input can also assist
an LLM to repair bugs [42].

During the Software Development Lifecycle, one of
the earliest stages is the design stage. During this stage,
the architecture of the system is determined. An idea of
using ChatGPT in collaboration with a software architect
to analyze, synthesize, and evaluate software architecture
was performed by Ahmad et al. [43]. ChatGPT was used
firstly to communicate with the architect to find a
potential solution to a problem, then to generate
requirements and software specifications and to generate
UML diagrams for said solution. Finally, ChatGPT was
prompted to evaluate its own architecture to find any
potential flaws it could have. This process was replicated
but this time, letting ChatGPT make its own decision,
without the help of an architect. The authors ended up
saying that the collaboration of human-bot did improve
the solution proposed for only the bot and argue for the
collaboration of both sides as the human can provide
knowledge ChatGPT doesn’t have while exploiting the
bot’s capabilities to architect software-intensive systems
[43].

The ability of producing source code was also
evaluated and tested by Idialu et al [44]. This paper
gathered a set of coding problems and asked GPT-3.5
code for a solution to the problem. Then the solution
generated by GPT-3.5 was compared to a human
programmed one and both solutions were compared. Only
26% of the answers GPT-3.5 gave were correct in
comparison to the 96% of human generated code. The
authors argue that the difficulty of the tasks and the
phrasing of the coding problems might have had some

301

responsibility on the poor performance of GPT-3.5 yet,
this was not confirmed.

Naturally, ChatGPT excels in Natural Language
Processing (NLP) tasks. With this, ChatGPT can maintain
conversations with the user in natural language. Not only
ChatGPT can generate code for a specific programming
problem, but it is also capable of rationalizing text and
proposing technical solutions for the problems proposed
in the email. Thiergart et al. used GPT-3 to draft email
responses with feasible and technical solutions to
challenges. GPT-3 was even capable of modifying the
answer to meet certain required conditions specified in the
emails. This could very well be implemented to not only
the drafting of requirements from a series of customer
needs or even generate test cases from the project
description [45].

One of the software metrics mentioned by Surameery
& Shakor earlier is Code Quality, Jalil et al. aimed to
analyze code quality using ChatGPT [46]. Similarly, Jalil
et al. used ChatGPT to find if it could determine the
quality of the code. For instance, one example the authors
provide is when they asked ChatGPT if coverage criterion
C1 subsumes coverage criterion C2, and test set T1
satisfies C1, and test set T2 satisfies C2. Would T1 satisfy
C2? T1 would satisfy C2 as C1 subsumes C2. However,
ChatGPT incorrectly answers this question saying T1 may
or may not satisfy C2. In similar situations to this one,
ChatGPT could answer correctly over 55.6% of the time.
Moreover, the authors being up the topic of ChatGPT in
other domains where it has been proven to be successful,
passing medicine and law exams yet, it struggles to
answer more elaborate questions which don’t have a clear
answer [46].

V. CONCLUSION
This study has shown that ChatGPT can be used as a SWE
tool, effectively becoming a digital programming partner
to a software engineer using XP when it is prompted
appropriately. To model this, ChatGPT was used in three
XP activities: code refactoring, code walkthroughs, and
coverage testing. The results, although primitive, were
promising. Given some sample code, i.e., Fig. 1, ChatGPT
could perform code walkthroughs, explaining what the
code did at every stage, and, further, it was capable of
extracting methods from the code, making it easier to
understand for the developer. Not only that, but when
asked again, ChatGPT could extract additional methods
when prompting ChatGPT to focus on specific lines of
code. This proves that ChatGPT is capable of extracting
code from different sections when prompted to. Finally,
ChatGPT developed usable code coverage test cases
showing 100% code coverage. A notable finding is
ChatGPT’s ability to produce test suites for a plethora of
coverage testing methods. Shown in Fig. 8, ChatGPT
produces branch, statement, and MC/DC coverage testing
suites. More empirical experiments are required to
examine if the test suites are properly engineered to be a

viable option. If ChatGPT can produce proper and correct
coverage cases, it can become a powerful engineering tool
for developers, even outside the XP framework. This tool
would aid engineers to avoid constructing extensive
control flow graphs.

It is worth noting that the code provided was a simple
code snippet and that if prompted to recreate the same
process with more complex code, the process may not be
as satisfactory. Still, it is important to recognize the
potential LLMs can have in assisting software engineers.
LLMs are in their infancy stage, meaning the true
potential they have is still being discovered; so, they
should not be seen as a replacement for software
engineers, but as a SWE tool to make the engineering
process much more efficient. It is worth noting that, in the
educational context, ChatGPT has been used as a
malicious tool by students to bypass or cheat on
assignments [47]. In any case, ChatGPT remains a
promising tool for software engineers.

What has been posited and tested in this paper is that
the representational capacity of LLMs trained on natural
language texts and source code, e.g., GPT-4, is vast, far
beyond what is possible for even an expert programmer,
and this immense knowledge capacity can be of great
benefit to the software engineer, who can leverage the
LLM as an almost omniscient pair programming partner.
With the XP activities of code refactoring, walkthroughs
and coverage testing, simple test cases showed that GPT-
4 is well capable of acting as an efficient and effective pair
programmer. Future work must explore other ways to
fully leverage LLMs to increase the capabilities of
Software Engineers, and to measure how effective it can
be beyond the example scenarios presented in this paper.

VI. REFERENCES

[1] A. Radford, K. Narasimhan, T. Salimans and I. Sutskever,

"Improving Language Understanding by Generative Pre-
Training," 2018.

[2] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei and I.
Sutskever, "Language Models are Unsupervised
Multitask Learners," OpenAI Blog, vol. 1, no. 8, p. 9,
2019.

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. D. P.
Kaplan, A. Neelakantan, P. Shyam, G. Sastry, A. Askell,
S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan
and R. Child, "Language Models are Few-Shot Learners,"
Advances in neural information processing systems, vol.
33, pp. 1877-1901, 2020.

[4] H. Nori, N. King, S. M. McKinney, D. Carignan and E.
Horvitz, "Capabilities of GPT-4 on Medical Challenge
Problems," arXiv, vol. 2303.13375v2, pp. 1-35, 2023.

[5] G. S. Matharu, A. Mishra, H. Singh and P. Upadhyay,
"Empirical study of agile software development
methodologies: A comparative analysis," ACM SIGSOFT
Software Engineering Notes, vol. 40, no. 1, pp. 1-6, 2015.

302

[6] B. Kent, "Embracing change with extreme
programming," Computer, vol. 32, no. 10, pp. 70-77,
1999.

[7] J. W. Tukey, "The Teaching of Concrete Mathematics,"
The American Mathematical Monthly, vol. 65, no. 1, pp.
1-9, 1958.

[8] B. W. Boehm, "SOFTWARE ENGINEERING - AS IT
IS," IEEE Transactions on Computers, vol. 25, no. 12, pp.
1226-1241, 1976.

[9] B. W. Boehm, "Seven Basic Principles of Software
Engineering," Journal of Systems and Software, vol. 3,
no. 1, pp. 3-24, 1983.

[10] I. Sommerville, "Software process models," ACM
Computing Surveys (CSUR), vol. 28, no. 1, pp. 269-271,
1996.

[11] "Manifesto for Agile Software Development," [Online].
Available: https://agilemanifesto.org.

[12] N. Salleh, E. Mendes and J. Grundy, "Empirical studies
of pair programming for CS/SE teaching in higher
education: A systematic literature review," IEEE
Transactions on Software Engineering, vol. 37, no. 4, pp.
509-525, 2010.

[13] I. Fronza, A. Hellas, P. Ihantola and T. Mikkonen, "Code
Reviews, Software Inspections, and Code Walkthroughs:
Systematic Mapping Study of Research Topics," in
International Conference on Software Quality, Vienna,
2019.

[14] C. Sadowski, E. Söderberg, L. Church, M. Sipko and A.
Bacchelli, "Modern Code Review: a case study at
google," in International Conference on Software
Engineering in Practice, New York, 2018.

[15] M. Ciolkowski, O. Laitenberger, D. Rombach, F. Shull
and D. Perry, "Software Inspections, Reviews &
Walkthroughs," in Proceedings of the 24th International
Conference on Software Engineering, 2002.

[16] A. Abadi, R. Ettinger and Y. A. Feldman, "Fine Slicing
for Advanced Method Extraction," in 3rd Workshop in
refactoring tools, 2009.

[17] N. Juillerat and B. Hirsbrunner, "Improving Method
Extraction: A novel approach to Data Flow Analysis
Using Boolean Flags and Expressions," in Proceedings of
the 1st Workshop on Refacotring Tools, Berlin, 2007.

[18] K. Beck, Extreme Programming Explained: Embrace
Change, Addison-Wesley, 2002.

[19] B. Du Bois, S. Demeyer and J. Verelst, "Refactoring-
improving coupling and cohesion of existing code," in
11th Working conference on reverse engineering, 2004.

[20] M. C. Paulk, "Extreme Programming from a CMM
perspective," IEEE Software, vol. 18, no. 6, pp. 19-26,
2001.

[21] R. Gopinath, C. Jensen and A. Groce, "Code coverage for
suite evaluation by developers," Proceedings of the 36th
international conference on software engineering, pp. 72-
82, 2014.

[22] D. Zhang and J. J. Tsai, "Machine learning applications
in software engineering," World Scientific, vol. 16, 2005.

[23] A. F. Agarap, ""Deep learning using rectified linear units
(relu)," arXiv preprint arXiv:1803.08375, 2018.

[24] H. Wang and B. Raj, "On the origin of deep learning,"
arXiv preprint arXiv:1702.07800, 2017.

[25] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P.
Sidike, M. S. Nasrin, B. C. V. Esesn, A. A. S. Awwal and
V. K. Asari, "The history began from alexnet: A
comprehensive survey on deep learning approaches,"
arXiv preprint arXiv:1803.01164, 2018.

[26] D. Jeffrey, "A golden decade of deep learning:
Computing systems & applications," Daedalus, vol. 151,
no. 2, pp. 58-74, 2022.

[27] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L.
Jones, A. N. Gomez, Ł. Kaiser and I. Polosukhin,
"Attention Is All You Need," Advances in Neural
Information Processing Systems , vol. 30, 2017.

[28] J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B.
Lester, N. Du, A. M. Dai and Q. V. Le, "Finetuned
language models are zero-shot learners," arXiv preprint
arXiv:2109.01652, 2021.

[29] J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, "Bert:
Pre-training of deep bidirectional transformers for
language understanding," arXiv preprint
arXiv:1810.04805, 2018.

[30] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A.
Mohamed, O. Levy, V. Stoyanov and L. Zettlemoyer,
"BART: Denoising Sequence-to-Sequence Pre-training
for Natural," arXiv preprint arXiv:1910.13461, 2019.

[31] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A.
Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro,
F. Azhar, A. Rodriguez, A. Joulin, E. Grave and G.
Lample, "LLaMA: Open and Efficient Foundation
Language Models," arXiv preprint arXiv:2302.13971,
2023.

[32] A. Svyatkovskiy, S. K. Deng, S. Fu and N. Sundaresan,
"IntelliCode Compose: Code Generation using
Transformer," Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software
Engineering, pp. 1433-1443, 2020.

[33] Z. Wojciech, "OpenAI Codex," OpenAI, 10 August 2021.
[Online]. Available: https://openai.com/blog/openai-
codex. [Accessed 2023].

[34] N. Nguyen and S. Nadi, "An empirical evaluation of
GitHub copilot's code suggestions," Proceedings of the
19th International Conference on Mining Software
Repositories, pp. 1-5, 2022.

[35] M. Wermelinger, "Using GitHub Copilot to Solve Simple
Programming Problems," In-Press, 2023.

[36] A. M. Dakhel, V. Majdinasab, A. Nikanjam, F. Khomh,
M. C. Desmarais and Z. M. Jiang, "Github copilot ai pair
programmer: Asset or liability?," Journal of Systems and
Software, 2023.

[37] F. F. Xu, U. Alon, G. Neubig and V. J. Hellendoorn, "A
systematic evaluation of large language models of code,"
Proceedings of the 6th ACM SIGPLAN International
Symposium on Machine Programming, pp. 1-10, 2022.

[38] OpenAI, "GPT-4 Technical Report," arXiv:2303.08774,
2023.

[39] S. Sarsa, P. Denny, A. Hellas and J. Leinonen,
"Automatic Generation of Programming Exercises and

303

Code Explanations with Large Language Models," arXiv
preprint arXiv:2206.11861, 2022.

[40] J. White, S. Hays, Q. Fu, J. Spencer-Smith and D. C.
Schmidt, "ChatGPT Prompt Patterns for Improving Code
Quality, Refactoring, Requirements Elicitation, and
Software Design," arXiv, vol. 2303.07839, pp. 1-14,
2023.

[41] N. M. S. Surameery and M. Y. Shakor, "Use Chat GPT to
Solve Programming Bugs," International Journal of
Information Technology and Computer Engineering, vol.
03, no. 1, pp. 1-6, 2023.

[42] D. Sobania, M. Briesch, C. Hanna and J. Petke, "An
analysis of the automatic bug fixing performance of
chatgpt.," arXiv preprint arXiv:2301.08653., 2023.

[43] A. Ahmad, M. Waseem, P. Liang, M. Fehmideh, M. S.
Aktar and T. Mikkonen, "Towards human-bot
collaborative software architecting with chatgpt," arXiv
preprint arXiv:2302.14600, 2023.

[44] J. Idialu, D. Etsenake and N. Abbas, "Whodunnit: Human
or AI?," University of Waterloo, Washington, DC, 2017.

[45] J. Thiergart, S. Huber and T. Übellacker, "Understanding
emails and drafting responses--An approach using GPT-
3," arXiv preprint arXiv:2102.03062, 2021.

[46] S. Jalil, S. Rafi, T. D. LaToza, K. Moran and W. Lam,
"Chatgpt and software testing education: Promises &
perils," arXiv preprint arXiv:2302.03287., 2023.

[47] J. Rudolph, S. Tan and S. Tan, "ChatGPT: Bullshit
spewer or the end of traditional assessments in higher
education," Journal of Applied Learning & Teaching, vol.
6, no. 1, pp. 342-356, 2023.

304

