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Abstract—The recent prevalence of Large Language 
models (LLMs), e.g., GPT-3.5 and GPT-4, has brought 
about a new age of man-computer symbiosis, where 
LLMs are employed for a litany of creative, 
constructive, scientific, or otherwise content-
generative tasks, e.g., as general chatbot assistants, 
writing editors, digital subject matter experts, 
programming consultants, and so on. Of interest to 
software engineers is the concept of “rubber duck 
debugging”, which is the act of expressing code, line-
by-line, in natural language, to an inanimate object, 
e.g., a rubber duck, for the purpose of elucidating 
potential issues that can then be corrected. In this 
paper, we detail a workflow process that leverages the 
concept of rubber duck debugging, replacing the duck 
with a capable LLM, e.g., GPT-4. We call it Digital 
Rubber Duck Programming. Furthermore, the 
Extreme Programming (XP) method, an 
implementation of the Agile paradigm, is considered 
as easily integrated with the proposed workflow, as XP 
is performed in pairs (much like the modern software 
engineer works in pairwise fashion with an LLM) and 
because XP places emphasis on performing extensive 
code reviews and unit testing all code, which capable 
LLMs like GPT-4 can facilitate. 
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I.  INTRODUCTION  
ChatGPT is a revolutionary Large Language Model 
(LLM) containing billions of parameters [1, 2, 3]. 
OpenAI’s state-of-the-art model can few-shot and even 
zero-shot learn to understand and generate from a user’s 
query [4]. Few-shot and zero-shot learning is the ability to 
generalize learned information into a new context. This 
new domain may or may not be in the original training 
dataset [3]. The few- and zero-shot learning ability of 
ChatGPT allows the model to be used in a variety of 
domains. The model’s domain agnosticism, paired with 
its advanced natural language understanding and 
generation, establishes ChatGPT as a state-of-the-art 

technology. Moreover, ChatGPT differs from other LLMs 
due to its training set also containing source code, 
empowering the model to generate code snippets in a 
plethora of coding languages.  The unique combination of 
code and natural language situates ChatGPT as a possible 
Software Engineering (SWE) tool for computer scientists 
and software engineers. Many software engineers utilize 
the Agile lifecycle model to produce production-quality 
software within industry [5]. One such method is Extreme 
Programming (XP), or the production of software in pairs 
of engineers [6]. This paper proposes that ChatGPT, with 
its powerful code and natural language understanding, can 
act as a virtual, hyper-intelligent, ever-present 
programming partner to a software engineer using XP. 
This paper examines scenarios in which GPT is used in a 
few XP activities like code refactoring, code 
walkthroughs, and coverage testing.  

The organization of this paper is as follows. Section 
II outlines the background knowledge required to 
understand the content related to XP and LLMs. Section 
III presents activities, prompts, and results from various 
XP activities. Section IV presents an overview of similar 
work that focuses on leveraging GPT for SWE or related 
activities. Finally, section V contains the authors’ 
suggested future work and concluding statements. 

II. BACKGROUND 

A. Software Engineering 
Software engineering as a discipline has been extant since 
at least the late 1950s, with discussions on software 
process models (e.g., Waterfall) occurring since the 1970s 
[7, 8, 9]. Under the traditional lifecycle model, software 
development requires a period of deliberation and 
documentation before any development begins. This 
traditional method of development was process-oriented, 
with little emphasis given to teams and their formation 
[10]. By its nature of up-front deliberation, the traditional 
development life cycle is extremely inflexible regarding 
change, e.g., modified customer requirements. 

The Agile approach aimed to mitigate the rigidity of 
Waterfall by being customer-centric and adaptable to 
change. The Agile approach was conceived by a small 
group of expert software practitioners, who prefer 
“individuals and interactions over processes and tools; 
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working software over comprehensive documentation; 
customer collaboration over contract negotiation; and 
responding to change over following a plan” [11]. 
Because of the lack of life cycle structure in Agile, there 
is a higher need for effective working teams. Extreme 
Programming (XP) is the most widely used Agile method, 
sharing the values espoused by the Agile Manifesto for 
Software Development. XP goes further to specify a 
simple set of practices, most notably, pair programming, 
in which two people write code together at the same 
workstation [6]. Pair programming with XP has been 
shown to improve the grades of student programmers, and 
the quality of student code, because of the benefits of 
actively walking through written code with another 
individual [12]. 

The three main activities covered in this paper are 
walkthroughs, method extraction & code refactoring, and 
code coverage & testing. 

 
Walkthroughs: 
Walkthroughs, a type of code review, are an SWE activity 
where engineers review and step through a code snippet 
to ensure it is correct and meets specifications [13]. 
During walkthroughs, reviewers will examine the code to 
find deviations from these specifications. Code 
walkthroughs have evolved over the years, including tools 
to assist reviewers in finding code errors, and identifying 
invalid functionality against specifications [14]. 
Originally, in the 1960s, walkthroughs were performed by 
someone paraphrasing and presenting logical algorithms 
aloud to others [15]. The intended purpose was not to find 
errors, but to train newcomers and introduce them to the 
system. Overtime, walkthroughs became useful in finding 
code defects, and so the goal changed from a training 
mechanism to a quality assurance activity. Currently, 
walkthroughs have adapted to fast-paced life cycles like 
Agile by following a lightweight framework [14]. This 
framework can be summarized in five key steps: creating, 
previewing, commenting, addressing feedback, and 
approving [14]. 

Code Review Flow Action 
Creating Author modifies code 
Previewing Author visualizes code changes 
Commenting Reviewers comment on changes 
Addressing Feedback Author address comments 
Approving Reviewers accept or reject authors 

changes w.r.t comments. 
Table 1. Steps to a code walkthrough 

Method Extraction and Code refactoring: 
Method extraction is a well-known and useful technique 
in wrangling large classes or methods [16]. Method 
extraction is a form of code refactoring that aims at 
making code cleaner and more readable by taking parts of 
code and refactoring them into a method. Method 
extraction is particularly difficult due to the need to 
preserve semantics and code behavior [17]. Typically, XP 

builds on the practice of refactoring by adding the benefit 
of a peer to ensure refactoring is done sensibly and in 
compliance with the specifications [18].  

Method extraction falls under general code 
refactoring. General code refactoring operates on 
changing code to avoid poor coding designs, called code-
smells [19]. Ideally, the goal of refactoring is to ensure a 
high-quality product is delivered to the customer. Quality 
is increased when code is highly cohesive and rarely 
coupled. Cohesion is code, either methods or classes, 
working together while coupling is code that is tightly 
bound together [19]. Because XP enforces multi-
perspective and continual design, code refactoring is a 
natural activity in XP [20]. A peer ensures that the correct 
refactoring method is addressing a code smell in XP.  

 
Code Coverage & Testing: 
Code coverage is a software testing metric that determines 
the number of lines of code that are validated by a test 
procedure, which helps to analyze how comprehensive 
some software is verified [21].   

B. Machine Learning 
With the advent of Machine Learning (ML), various 
software engineering activities have been integrated with 
ML systems to assist the software developer. For instance, 
some of the earliest uses of ML in the Software 
Development Life Cycle (SDLC) include estimating 
development effort, classifying fault-prone software 
modules, modularizing source code and generating 
software test data [22]. 

The advancement of neural networks and particular 
activation functions, e.g., ReLU [23], in combination with 
expandingly powerful graphics processing units (GPUs) in 
computers, allowed neural networks (which, in the 1990s, 
were relatively shallow) to become deeper, i.e., Deep 
Learning, incorporating more layers and complex 
architectures [24, 25, 26]. 

In 2017, the groundbreaking neural network 
architecture, the Transformer, which uses a novel self-
attention algorithm, was proposed [27]. Based upon the 
Transformer, contemporary, pre-trained LLMs with 
billions of parameters, like OpenAI’s GPT series [1, 2, 3], 
Google’s Fine-tuned Language Net (FLAN) [28] and 
Bidirectional Encoder Representations from 
Transformers (BERT) [29] models, and Facebook’s 
Bidirectional and Auto-Regressive Transformers (BART) 
[30] and Large Language Model Meta AI (LLaMA) [31] 
models are used to power applications, provide insights to 
inquirers and assist in a variety of tasks. 

Based on transformers, the code generation tool 
Intellicode Compose is an add-on for Integrated 
Development Environments (IDEs), e.g., Visual Studio 
Code, used by developers as a programming assistant 
[32]. Released in 2021 by OpenAI, Codex powers 
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GitHub’s Copilot. GitHub Copilit is described as an “AI 
pair programmer”, that can integrate with certain IDEs, 
providing suggestions while coding [33]. GitHub Copilot 
has been evaluated as being useful for simpler software 
development tasks, where the human developer is needed 
finalize its output [34, 35]. While GitHub Copilot is a 
useful tool for software developers, the quality of its 
generated code depends heavily on the conciseness and 
correctness of the natural language prompts provided by 
the developer [36]. In 2022, OpenAI deprecated the 
Codex model, because GPT-3 and GPT-3.5 (ChatGPT) 
performed exceptionally well at coding tasks, as well as 
various other tasks. 

Since mid-2022, LLMs for writing code have been 
discussed and shown to be quite useful for certain 
programming activities, e.g., autocompleting redundant 
portions of code, refactoring code, writing simple 
functions, etc. [37]. In the early months of 2023, LLM 
development accelerated rapidly, with ChatGPT (GPT-
3.5 and GPT-4) becoming extremely capable 
programming assistants available to the mass public 
through a simple web interface. Building on GPT-3.5, 
GPT-4 has advanced reasoning capabilities and increased 
attention, in addition to having the distinction as being the 
first multimodal model in mass use, as it can accept image 
and text inputs, responding in text [38]. GPT has even 
recently been used to generate programming exercises and 
explanations for teaching students code [39]. 

III. DIGITAL XP ACTIVITIES 
Our approach is to use ChatGPT in XP activities, taking 
note of input queries and ChatGPT’s output. To illustrate 
this approach, consider the following simple snippet as an 
example of an engineer developing a piece of software 
alongside ChatGPT. This code snippet is in the Python 
language and uses variables, conditionals, and loops. The 

goal and meaning of the code are arbitrary. Fig. 1 is the 
code snippet used in all the scenarios. The following 
sections use this code sample for ChatGPT’s application 
in the XP activities. This paper presents an approach to 
developing workflows that incorporates ChatGPT into 
software activities.   

A. Walkthroughs 
ChatGPT can conduct code walkthroughs to some 

extent. The query for walkthroughs is a simple statement 
of “Can you perform a walkthrough of this code” with the 
code snippet attached. As seen in Fig. 2, ChatGPT steps 
through and reads the snippet, shown in Fig. 1, line-by-
line. For each line, ChatGPT provides a small 
summarization of code and the logical progression of 
variables. The generated transcript reads similarly to the 
original code walkthrough process, where an engineer 
would read aloud their logic. The last paragraph of the 
generated explanation is critical as ChatGPT 
hypothetically runs the code to find the behavior of the 
snippet which is printing ‘1’ five times. ChatGPT’s code 
walkthrough operates closely to the original walkthrough 
process rather than the steps found in Sadowski et al.’s 
work. This is not to say that ChatGPT cannot adhere to 
those five walkthrough steps but when simply prompting 
about a code walkthrough, ChatGPT resorts to just 
logically stepping through code. Adjusting the query by 
providing further walkthrough steps might enforce the 
model to generate a response that adheres to the five 
walkthrough steps. Example prompts to adhere GPT to the 
five walkthrough steps can be found in Table 2: 

Code review flow Prompt 
Creating � Refactor method X 

� Method extract lines 34-39 
Previewing � From these two code snippets, detail 

the difference between them 
Commenting � From these two code snippets, 

comment on the different [coding 
styles, execution, output, behavioral 
changes] 

� Do the code changes meet these 
given requirements? 

Addressing 
Feedback 

� Can you address if the additional 
changes meet given requirements 

Approving � Is this code snippet fulfilled given X 
criteria? 

� Is this code acceptable for 
production? 

Table 2: Prompts to use for adhering ChatGPT to follow a structured 
walkthrough. 

 
Fig.  1. The sample code snippet used in each SWE activity. 
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More prompt testing is required to learn the full extent of 
ChatGPT’s capabilities in conducting code walkthroughs; 
however, it currently produces a modest and useful 
walkthrough as a peer in XP without prompting for 
specific structured walkthroughs. 

B. Method Extraction & General Code Refactoring 
Fig. 3 & Fig. 4 display GPT’s capabilities in method 
extraction. The results of Fig. 3 are from the prompt “Can 
you extract for the first if/else pair?” ChatGPT created a 
new method named calculate_bar which is the original if-
else statement and returns bar. Fig. 4 extracts more 

 
Fig.  2. ChatGPT’s response to “Can you perform a walkthrough of this code?” 

Prompt: Can you extract a method for the first if/else 
pair? 

            Prompt: Could you extract more methods from the calculate 
bar method? 

Fig.  3. Generated code snippet from above prompt. 
               

Fig.  4. Generated code snippet from above prompt. 
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methods from the conditionals, named 
calculate_bar_floor and calculate_bar_mod. An 
alarming problem from this method extraction is 
ChatGPT’s method naming capabilities. The method 
name calculate_bar_floor is not reflective of the behavior 
of the method. The method multiplies foo by ten and 
divides by three, yet its function name contains floor and 
not the behavior. This is especially interesting given that 
calculate_bar_mod contains a modulo function. 
ChatGPT’s naming conventions might not be suitable for 
developers to rely on if they are not consistent. While this 
erroneous result might be related to the prompt, more 
experimentation with ChatGPT’s method extraction 
capabilities is required. 

While our experiment is not the utmost conclusive in 
terms of exploring GPT’s capabilities, it can be seen as a 
seed to further explore the capability. Fig. 5 shows 
ChatGPT’s capabilities when asked to refactor code. The 
prompt is “Can you refactor some lines?” ChatGPT 
focused on maintaining behavior while also making the 
code more concise. ChatGPT combines the if/else block 
that calculates bar using a ternary operator. This ternary 
operator checks if foo is less than five, if it is, then it 
calculates bar using the floor function and the formula 
(foo * 10) / 3. Otherwise, the calculation becomes foo 
modulo 2. ChatGPT also combines the two for-loops 
using a ternary operator “if/else” which checks if foo is 
greater than bar. The operator loops accordingly to the 
result of the ternary operator. The code is certainly more 
concise than the original code snippet; however, ChatGPT 
does not inherently address code smells when refactoring 
code. This is critical to acknowledge because further 
examination of its knowledge of code smells and their 
respective refactoring might be required if that capability 
is desired when using it as an XP partner. 

C. Code Coverage & Testing 
When prompted with the question, “For this code, do 
coverage testing: [Attached coverage testing]”, ChatGPT 
generated the test suite displayed in Fig. 8 along with an 
explanation of the reasonings for each of the test cases. 
Interestingly, ChatGPT defaults to branch coverage 
testing, or testing the conditionals, when asked to do 
coverage testing. Following the explanation of the tests, 
ChatGPT offers different ways to run the tests. Once the 
test suite was proposed, ChatGPT was prompted to 
generate the code required for those test cases, which can 
be seen in Fig. 6. The name of the method remains 

constant to the one ChatGPT suggested when generating 
the test suite so it is easy to trace when each of those tests 
would be applicable. In addition, ChatGPT predicts what 
the output will be. Fig. 7 displays the results for the 

generated code coverage test suites. While defaulting to 
branch coverage testing, ChatGPT is aware of different 
types of coverage testing such as statement coverage and 
Modified Decision/Decision Coverage (MC/DC) testing. 
ChatGPT also provides a small summary and a general 
rationale for each test.  ChatGPT provides a code suite to 
test each test case for the prompts/responses in Fig. 8. 
ChatGPT’s ability to provide a test suite for different 
types of coverage testing, at an engineer’s disposal, makes 
it an exemplary tool for XP and SWE in general. 
 

Fig.  6. The sample code generated by ChatGPT for the code 
coverage testing. 

 
Fig.  7. Results for the execution of the test suites.

Fig.  5. The refactored code generated by ChatGPT. 
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IV. RELATED WORK 
This section will discuss related work that leverages GPT 
into other facets of SWE outside of XP. This includes 
using it as a tool for active programming, and activities in 
the later stages of the SDLC, e.g., software testing. 

Current research with GPT is still in the stage of novelty, 
even more so in the context of SWE. While the concept of 
using GPT as a digital rubber duck is unique to this paper, 
there are a few research efforts that build upon similar 
themes. White et al. compiles ChatGPT prompts which 
are used for specific SWE engineering activities [40]. The 

 
Prompt  Response 

(1) For this code, do coverage 
testing: [Attached coverage 

testing] 

 
(2) Can you do statement 

coverage for the same code 
snippet? 

 
(3) Can you do MC/DC for the 

same code snippet? 

 
 

Fig. 8. Test cases generated to cover all possible paths of code. From top to bottom, (1) general prompting for coverage testing, (2) statement 
coverage testing, and (3) MC/DC coverage testing.  
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authors organize their prompt patterns into four types of 
software activities: requirements elicitation, system 
design and simulation, code quality, and refactoring. 
Table 1 shows the prompt patterns for each software 
activity. The paper shows possible prompts for each 
pattern. 

Software 
Activity 

GPT prompt pattern 

Requirements 
elicitation 

� Requirements Simulator 
� Specification disambiguation 

� Change request Simulation 
System design 
and Simulation 

� API generator 
� API simulator 
� Few-Shot example generator. 
� Domain-Specific Language 

(DSL) Creation 

� Architectural possibilities 
Code quality � Code Clustering 

� Intermediate Abstraction 
� Principled Code 

� Hidden Assumptions 
Refactoring � Pseudo-code Refactoring 

� Data-guided Refactoring 
Table 3. The organization of prompt patterns for using GPT in SWE 

activities [41].  

The authors supply each prompt pattern with a 
detailed explanation of their prompt & structure stemming 
from a software engineer’s rationale. They structure their 
prompts by providing a few example implementations 
that will result in the desired SWE activity when 
prompting ChatGPT. An example is shown by providing 
the paper’s specification disambiguation pattern [40]: 

Specification Disambiguation Pattern: 
1. Within this scope 
2. Consider these requirements or specifications 
3. Point out any areas of ambiguity or potentially 
unintended outcomes 

When prompting, a user should use these prompt 
patterns to disambiguate or identify ambiguous 
requirements specifications. These patterns are simply 
starting points and should be used as seeds for more 
complex prompts [40]. 

One of the core capabilities of ChatGPT is its ability 
to understand and produce source code. The previous 
paper has four prompt patterns related to code quality. 
Surameery & Shakor expand upon using GPT for 
resolving code by using it to identify and debug code [41]. 
While brief, Surameery & Shakor overview GPT’s 
debugging capabilities such as debugging assistance, bug 
prediction, and bug explanation. The author’s compare 
GPT’s debugging abilities with common debugging tools 
and examines capability metrics between them. These 
comparisons are divided into different categories: cost, 
speed, accuracy, customizability, ease of use, integration 
with existing tools, and scalability. ChatGPT performed 

better than the other tools when it comes to cost, speed, 
ease of use, and scalability. ChatGPT is cheaper than 
traditional debugging tools, it is also faster than the other 
tools when providing bug explanations can provide bug 
explanations, it is also easier to use as it has natural 
language generation capabilities making it easier to 
understand its results and can be used to debug code at 
scale in comparison to other debugging tools that might 
struggle with larger datasets. However, traditional 
debugging tools offer more customization options, are 
easier to integrate with other tools and can be more 
accurate than ChatGPT.  

A practical representation of bug reporting was 
performed by Sobania et al. [42]. Here, several LLMs 
were tasked with identifying, and suggesting fixes to a 
series of benchmark problems in codes and report if there 
was any fix required. These problems could vary from 
classification metrics, to sorting algorithms 
implementation or calculations. The results of LLMs were 
compared to the ones from automated program repair 
methods. The results showed that LLMs were capable of 
outperforming automated repair tools, achieving almost 
50% of bugs fixed. When in combination with some 
LLMs dialogue option, the performance was boosted to 
almost 78%. This showed that human input can also assist 
an LLM to repair bugs [42].  

During the Software Development Lifecycle, one of 
the earliest stages is the design stage. During this stage, 
the architecture of the system is determined. An idea of 
using ChatGPT in collaboration with a software architect 
to analyze, synthesize, and evaluate software architecture 
was performed by Ahmad et al. [43]. ChatGPT was used 
firstly to communicate with the architect to find a 
potential solution to a problem, then to generate 
requirements and software specifications and to generate 
UML diagrams for said solution. Finally, ChatGPT was 
prompted to evaluate its own architecture to find any 
potential flaws it could have. This process was replicated 
but this time, letting ChatGPT make its own decision, 
without the help of an architect. The authors ended up 
saying that the collaboration of human-bot did improve 
the solution proposed for only the bot and argue for the 
collaboration of both sides as the human can provide 
knowledge ChatGPT doesn’t have while exploiting the 
bot’s capabilities to architect software-intensive systems 
[43]. 

The ability of producing source code was also 
evaluated and tested by Idialu et al [44]. This paper 
gathered a set of coding problems and asked GPT-3.5 
code for a solution to the problem. Then the solution 
generated by GPT-3.5 was compared to a human 
programmed one and both solutions were compared. Only 
26% of the answers GPT-3.5 gave were correct in 
comparison to the 96% of human generated code. The 
authors argue that the difficulty of the tasks and the 
phrasing of the coding problems might have had some 
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responsibility on the poor performance of GPT-3.5 yet, 
this was not confirmed. 

Naturally, ChatGPT excels in Natural Language 
Processing (NLP) tasks. With this, ChatGPT can maintain 
conversations with the user in natural language. Not only 
ChatGPT can generate code for a specific programming 
problem, but it is also capable of rationalizing text and 
proposing technical solutions for the problems proposed 
in the email. Thiergart et al. used GPT-3 to draft email 
responses with feasible and technical solutions to 
challenges. GPT-3 was even capable of modifying the 
answer to meet certain required conditions specified in the 
emails. This could very well be implemented to not only 
the drafting of requirements from a series of customer 
needs or even generate test cases from the project 
description [45]. 

One of the software metrics mentioned by Surameery 
& Shakor earlier is Code Quality, Jalil et al. aimed to 
analyze code quality using ChatGPT [46]. Similarly, Jalil 
et al. used ChatGPT to find if it could determine the 
quality of the code. For instance, one example the authors 
provide is when they asked ChatGPT if coverage criterion 
C1 subsumes coverage criterion C2, and test set T1 
satisfies C1, and test set T2 satisfies C2. Would T1 satisfy 
C2? T1 would satisfy C2 as C1 subsumes C2. However, 
ChatGPT incorrectly answers this question saying T1 may 
or may not satisfy C2. In similar situations to this one, 
ChatGPT could answer correctly over 55.6% of the time. 
Moreover, the authors being up the topic of ChatGPT in 
other domains where it has been proven to be successful, 
passing medicine and law exams yet, it struggles to 
answer more elaborate questions which don’t have a clear 
answer [46].  

V. CONCLUSION 
This study has shown that ChatGPT can be used as a SWE 
tool, effectively becoming a digital programming partner 
to a software engineer using XP when it is prompted 
appropriately. To model this, ChatGPT was used in three 
XP activities: code refactoring, code walkthroughs, and 
coverage testing. The results, although primitive, were 
promising. Given some sample code, i.e., Fig. 1, ChatGPT 
could perform code walkthroughs, explaining what the 
code did at every stage, and, further, it was capable of 
extracting methods from the code, making it easier to 
understand for the developer. Not only that, but when 
asked again, ChatGPT could extract additional methods 
when prompting ChatGPT to focus on specific lines of 
code. This proves that ChatGPT is capable of extracting 
code from different sections when prompted to. Finally, 
ChatGPT developed usable code coverage test cases 
showing 100% code coverage. A notable finding is 
ChatGPT’s ability to produce test suites for a plethora of 
coverage testing methods. Shown in Fig. 8, ChatGPT 
produces branch, statement, and MC/DC coverage testing 
suites. More empirical experiments are required to 
examine if the test suites are properly engineered to be a 

viable option. If ChatGPT can produce proper and correct 
coverage cases, it can become a powerful engineering tool 
for developers, even outside the XP framework. This tool 
would aid engineers to avoid constructing extensive 
control flow graphs. 

It is worth noting that the code provided was a simple 
code snippet and that if prompted to recreate the same 
process with more complex code, the process may not be 
as satisfactory. Still, it is important to recognize the 
potential LLMs can have in assisting software engineers. 
LLMs are in their infancy stage, meaning the true 
potential they have is still being discovered; so, they 
should not be seen as a replacement for software 
engineers, but as a SWE tool to make the engineering 
process much more efficient. It is worth noting that, in the 
educational context, ChatGPT has been used as a 
malicious tool by students to bypass or cheat on 
assignments [47]. In any case, ChatGPT remains a 
promising tool for software engineers.  

What has been posited and tested in this paper is that 
the representational capacity of LLMs trained on natural 
language texts and source code, e.g., GPT-4, is vast, far 
beyond what is possible for even an expert programmer, 
and this immense knowledge capacity can be of great 
benefit to the software engineer, who can leverage the 
LLM as an almost omniscient pair programming partner. 
With the XP activities of code refactoring, walkthroughs 
and coverage testing, simple test cases showed that GPT-
4 is well capable of acting as an efficient and effective pair 
programmer. Future work must explore other ways to 
fully leverage LLMs to increase the capabilities of 
Software Engineers, and to measure how effective it can 
be beyond the example scenarios presented in this paper. 
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