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Abstract— Consumer-grade Unmanned Aerial Vehicles 
(UAVs) are becoming more common capabilities on the modern 
battlefield, finding use by both formal standing armies and non-
state sponsored organizations with small budgets. The threats 
posed by these UAVs are varied, ranging from intelligence 
gathered from reconnaissance, spotting for indirect fires, or 
attacking with a payload on the UAV itself. These dangers create 
new challenges that militaries must adapt to ensure soldiers are 
protected and mission completion is possible despite the threat of 
UAV interdiction. In this paper, we propose an AI object detection 
model that is capable of identifying UAVs in the visible spectrums 
and distinguishing them from images that contain no UAVs. This 
model can be used as a targeting system for anti-UAV 
countermeasures. The dataset used to train the model consists of 
2,000 images. 1000 images are of UAVs and 1000 contain no UAVs. 
The models we tested were ResNet18, ResNet50, and GoogleNet. 
GoogleNet achieved the best results, yielding a precision of 0.995, 
recall of 0.995, F1-score of 0.995, and test accuracy of 98.44%. 
These results and the initial dataset present a good base for 
researchers to explore and design a practical solution for defense 
against small drone attacks. 

Keywords—Convolutional Neural Network, ResNet, GoogleNet, 
AlexNet, Transfer Learning, Drones, UAV, military. 

I. INTRODUCTION 

Artificial Intelligence (AI) has found many important roles 
in our world. It helps conduct studies, ensures security, and even 
powers some of the more mundane aspects of everyday life. It is 
also used in modern warfare in a variety of roles. Most 
prominently, it has been integrated into various platforms 
targeting systems for the identification of threats and electing 
how to counter or destroy them, which assists in the automation 
of the protection of military forces. As threats change, these 
models must be updated or replaced to ensure they can continue 
providing effective security. 

Another emerging technology that has found itself at home 
in war is the Unmanned Aerial Vehicle (UAV). UAVs pose 
significant benefits to the parties that use them. They can be used 
without exposing any human life to risk. They can come in all 
shapes and sizes, which their capabilities are tied to. However, 
perhaps most importantly, they are easily proliferated and 
modified into a hard-to-detect vehicle that can launch a new 
attack on one’s enemy. Of course, these same advantages 
translate to disadvantages for anyone on the side opposing any 

party that uses UAVs. Military, law enforcement, and civilians 
can all be subject to the problems posed by UAV threats from 
any number of actors, including state governments, terrorist 
organizations, or other negligent or malicious civilians. 

UAVs offer many beneficial and benign uses for users. 
These include agricultural, environmental monitoring, delivery, 
internet service, maritime monitoring, and unexploded 
ordinance detection and disposal [1]. These kinds of services are 
very important to society for various reasons, from the 
preservation of our ecosystems to logistics, resource acquisition, 
safety, and security. However, UAVs are finding a large number 
of military applications as well. UAVs were most notably used 
by the US during the war on terror, but the common perception 
of these UAVs is of the larger airframes flying many kilometers 
high hitting targets with Hellfire missiles. The foil of this is the 
types of UAVs being used by groups with less funding and 
infrastructure. These are most often Consumer Off the Shelf 
(COTS) UAVs that have been refitted with various payloads 
(some deadly) and repurposed into more deadly tools [2]. This 
can be observed quite frequently in the current war in Ukraine. 
Russian and Ukrainian forces use UAVs to drop grenades and 
small explosives, carry suicide payloads, conduct 
reconnaissance, and spot indirect fires [3]. Sometimes a single 
drone is used to reduce the signature of an activity. Others, 
swarms of dozens are used to make any activities harder to stop. 
They have found a role that has fundamentally changed the way 
people fight. 

The motivation for researching how AI may be used to 
reduce the threats and problems created by modern UAV tactics 
is to help ensure the safety of military personnel, assets, and 
installations. As previously stated, military forces are becoming 
increasingly vulnerable to COTS UAV attacks and 
reconnaissance. ML models are capable of detecting UAVs in 
images and can therefore be adapted to this use. Such a model 
can be used as the basis for a targeting system for an asset 
designed to shoot down UAVs or counter them with other 
means. Key points in military installations can be protected and 
forces in the vicinity of vehicle-mounted systems can also enjoy 
the security it provides. 

The aim of this paper is to explore the use of deep learning 
algorithms for the detection of UAVs. We also aim to develop a 
dataset for our purpose because we could not find a suitable one 
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for our use. produce an AI-powered model that is capable of 
detecting UAVs through camera sensors. It must be highly 
accurate to avoid targeting small objects that are not UAVs. It 
needs to be a very quick model, as there are scenarios where 
UAVs are suddenly present and the vulnerable parties may only 
have seconds to react to the threat. It will play an extremely 
critical role in ensuring the safety of people in our world today. 

The rest of the paper is organized in the following way: 
section 2 reviews current literature on the topic being 
researched. Section 3 discusses the proposed method that will be 
used and how it was trained, including information on the 
selected dataset. Section 4 covers test results and analysis, and 
section 5 concludes the paper by highlighting the conclusion and 
future work. Section 6 lists all references used in this paper. 

II. LITERATURE REVIEW 

Due to the extremely rapid transition to the use of consumer 
UAVs as spotters and payload carriers in combat by groups that 
are required to be resourceful, especially in Ukraine, the 
scientific community is now looking for new ways to combat 
this developing use. There are many soldiers’ and civilians’ lives 
at risk due to this new way to wage war, and developing an AI 
model with the capability of detecting and identifying UAVs 
would lead to a new capability that could substantially reduce 
bloodshed and tragedy.  

In [4], the authors proposed a method that uses an enhanced 
You Only Look Once (YOLO) v5 deep learning model to detect 
and identify different Unmanned Aerial Vehicles and their 
payloads. They named this model YOLOv5s(PANet), with 
PANet standing for Path Aggregation Network. Their dataset is 
manually generated and consists of 5,460 images of drones in 
various environments and 1,709 images of drones with various 
attached payloads. The drones that appear in the dataset include 
Anafi Extended, DJIFPV, Mavic2 Enterprise Dual, MAVIC Air, 
and EFT-E410S. The payloads include various objects such as 
missiles, bombs, cameras, mounted guns, and packages. They 
reserved 70% of the data for training, 20% for testing, and 10% 
for validation. They report that all the tested models, which 
include their proposed model, YOLOv5m, and YOLOv5s, 
achieved a mean average precision (mAP) and recall of 100% 
when detecting UAVs in cloudy environments. They found that 
YOLOv5(PANet) yields a greater mAP of 99% compared to the 
other two model’s mAPs of 97% and 98% when detecting small 
UAVs in evening environments. When testing payload detection 
on YOLOv5s and YOLOv5s(PANet), the authors found that, 
although their model did outperform YOLOv5s, neither model 
performed that well. YOLOv5(PANet) yielded mAPs ranging 
from 50% to 95% and recalls of 47.1% to 75.8% depending on 
the type of payload being detected. They state this is a result of 
some of the payloads being hidden inside the UAV and not being 
properly captured in the image. YOLOv5s(PANet) received an 
F1-score of 89.5%.  

In [5], the authors propose a possible low-cost AI-powered 
counter-drone system that can detect, identify, and eliminate 
hostile UAVs to alleviate the currently problematically 
expensive options available presently. Their solution is to use a 
detection algorithm on board a UAV that will track and intercept 
hostile UAVs. They use a total of three models. Model 1 has a 
Convolutional Neural Network (CNN) architecture. Model 2 

uses YOLOv3 with pre-trained weights from Darknet-53. Model 
3 uses an optimized version of the EfficientNet-B0 algorithm. 
The dataset they used to train, test, and validate the models was 
created using Airsim Simulator, which uses Unreal Engine to 
generate realistic scenarios, to generate 2,000 images of drones 
in random positions in the generated environment. They report 
Models 1, 2, and 3 have mAPs of 83.63%, 84.93%, and 89.77% 
respectively. Models 1, 2, and 3 achieved accuracies of 85%, 
91%, and 86%, and F1-scores of .90, .94, and .91 respectively. 
One limitation of this study is that approximately 10% of auto-
labeled images were inaccurate and had to be removed from the 
dataset, which was caused by the hunting and hostile UAVs 
being too close together, which results in extremely high relative 
speed.  

In [6], the authors proposed the use of counter-UAVs to 
detect intruding UAVs, which is more efficient than human 
intervention. They use an algorithm called Deep Q-Learning 
from Demonstrations (DQfD) to detect flying UAVs and capture 
them. They train DQfD using Reinforced Learning (RL) with 
incremental rewards and trials of detecting and capturing UAVs 
on Airsim. The counter-UAV could take one of five actions, 
which were moving forward, yawing left or right, and ascending 
or descending. They tested nine different deep-reinforcement 
learning algorithms to see which was most effective. 
Simulations were rendered by an NVIDIA GeForce RTX 3060 
Ti with 8GB VRAM. They report that their lowest resulting 
success rate was 5% and their highest was 98%. The 5% success 
rate was caused by the model routinely crashing the UAV. In 
[7], the authors proposed a new object detection dataset intended 
to train visually based object detection machine learning 
algorithms to detect multiple Unmanned Aerial Vehicles 
(UAVs) using a camera. It was constructed to create a large 
dataset of UAVs specifically tailored to object detection, which 
the author claims had not been done prior to the creation of their 
dataset. This dataset is made of real-world hand-labeled images 
of drones intended for the visual detection of UAVs. It consists 
of 51,446 images, some of which were manually labeled and 
some of which were labeled by an Artificial Neural Network 
(ANN) based model used to make the process semi-automated. 
The dataset was generated with the goal of sampling a broad 
range of environmental variables, such as time of day, weather, 
landscape, and UAV position relative to the camera. They used 
this data to train 819 instances of various Convolutional Neural 
Networks (CNN) and 603 Haar Cascades. The Haar Cascades 
resulted in more easily deployed but less effective models, 
yielding a maximum accuracy of 55.4%, precision of 81.7%, 
recall of 18.1%, and F1-score of 28.6%. In contrast, the CNN-
based models were not as easily deployed but had much better 
results, including a maximum precision of 89.3%, recall of 
49.3%, specificity of 95.7%, an accuracy of 70.3%, and F1-score 
of 62.7%They find that HAAR Cascades are easily deployed 
and perform moderately, achieving a modest 55% accuracy and 
0.32 F1 score, but pale in comparison to more comprehensive 
Deep Neural Networks which require more computing power 
and achieved accuracies of 70% and an F1 score of 60.2.  

In [8], the authors proposed the use of the YOLOv5 
algorithm in visual UAV detection systems. They used a dataset 
called Det-Fly, which is comprised of 13,271 hand-labeled 
images of DJI-Maveric drones against various simple and 
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complex backgrounds. They trained both YOLOv5 and Faster 
R-CNN with this data. They then tested these two algorithms 
against each other and found that Faster R-CNN was prone to 
false positives, as well as false positives in simple scenarios, 
while YOLOv5 performed generally better in both simple and 
complex scenarios. In [9], the authors proposed using a multi-
agent depth deterministic policy gradient (MADDPG) algorithm 
to control swarms of drones designed to counter hostile drone 
swarms. They used 50,000 rounds of simulated training to train 
their AI through unsupervised learning and found that there was 
a problem causing friendly UAVs to overshoot and miss their 
targets. After implementing a rule to mitigate this, they 
conducted 500 test rounds and found that their success rate had 
jumped from 63% to 81%. 

In [10], the authors proposed an Unmanned Aerial Vehicle 
(UAV) detection system that uses machine learning and object 
detection to alleviate various problems with radar detection 
systems. They used AI to control surveillance UAVs, which 
searched for and identified potentially hostile UAVs in video 
frames. They elected to use the Haar-Feature-based Cascade 
Classifier trained on 7000 positive images (including images 
modified using distortion) and 3019 negative images gathered 
from Google and http://face.urtho.net/. They reported a 
maximum accuracy of 91.6% and an average of approximately 
89%. In [11], the authors proposed the use of the NVIDIA Jetson 
TX2 as an object detector to detect unwelcome UAVs. They 
used YOLOv3 with pre-trained weights and transfer learning to 
train the algorithm to detect UAVs. They manually sorted 1435 
images and used various forms of data augmentation to expand 
the dataset to 7175 images. They reported an average confidence 
level of 88.9% resulting from their tests. They also reported that 
a limitation of their study was the low processing power of the 
Jetson TX2, which resulted in low framerates.  

In [12] the authors proposed a real-time UAV detection 
algorithm based on the necessity of real-time detection to 
combat unauthorized UAV activity and make distinctions 
between UAVs and birds. They used MobileNetV2 CNN and 
obtained a dataset of 24,075 images including 10,155 images of 
UAVs, 4572 images of birds, and 9348 background images. 
They reported an accuracy of 99.83% and reported a limitation 
on the ability of their algorithm to detect UAVs moving near 
other small moving objects. In [13], the authors proposed a UAV 
detection algorithm to replace radar detection systems, which 
have trouble detecting and making distinctions between small 
objects. They used a YOLOv3 object detector and a multiclass 
dataset consisting of more than 10,000 images of tricopter, 
quadcopter, and hexacopter UAVs. They reported training 
resulted in approximately 95% accuracy and approximately 
98% recall. To remedy the possibility of the model incorrectly 
identifying the type of UAV it detects, they suggest RF signal or 
audio detection be used in conjunction with their model.  

In [14], the authors proposed the use of YOLOv4 for 
automated visual UAV detection to correctly distinguish 
between UAVs and birds to defend against the misuse of UAVs. 
They collected images from Kaggle and Google to build their 
dataset of 2,395 images, which included 479 bird images and 
1,916 images of UAVs. They reported testing the model on 
detecting DJI Mavic Pro and DJI Phantom III drones resulted in 
an mAP of 74.36%, precision of 0.95, recall of 0.68, and an F1 

score of 0.79. They also reported that the altitude of the object 
being detected created a limitation for the model because higher-
altitude objects were more difficult to detect and correctly 
identify. AI-driven models are already being widely used 
detection and classification of various objects in images. In [15], 
the authors proposed an AI model to detect and track people 
using UAVs fitted with cameras in order to ensure the efficiency 
and reliability of the tasks they perform. They used Single Shot 
Detector (SSD) trained on 5,100 images in a binary dataset that 
either contained a person or no person. They then put their model 
on board a Parrot AR Drone 2 which would represent a UAV 
tasked to detect people. They reported a sensitivity of 0.98 and 
precision of 0.99, which were superior to results achieved by a 
YOLO object detection algorithm.  

In [16], the authors proposed an algorithm that rapidly 
detects UAVs to protect various security risks from being 
exploited by malicious UAV users. Their detection algorithm is 
based off of the improved CenterNet, which created a feature 
map and identifies UAVs by their features. They trained their 
model on a dataset consisting of 1,800 images of various types 
of UAVs, reserving 1,300 images for training and 500 for 
testing. They tested their proposed model against Faster-RCNN, 
YOLOv4, and CenterNet(dla-34) and found that, although their 
model had a lower average precision (0.930 compared to 
YOLOv4’s 0.971), their model was able to maintain an FPS of 
143.32, which meant the model could detect drones more 
quickly and make repeated assessments faster. Future 
implementation of this model would be to enable steps to 
counter malicious UAVs, such as alarming or jamming. In [17], 
the authors proposed a drone detection model based on 
YOLOv4 to secure no-fly zones in order to protect against 
economic losses and passenger safety. They trained and tested 
YOLOv4, YOLOv3, and SSD to determine which model was 
best at detecting UAVs. Their dataset contained 1,540 images of 
DJI-Phantom, DJI-Inspire, and XIRO-Xplorer UAVs and 556 
images of these same UAVs, which were rotated and flipped to 
increase the amount of data. The final size of the dataset is 3,218 
images. In testing, they found that YOLOv4 was the overall best 
model with an accuracy of 89.32% and recall of 92.48%, which 
outperformed both YOLOv3 and SSD’s results. 

In [18], the authors proposed a model that would be able to 
detect and identify UAVs in order to counter the increasing 
proliferation of UAVs for malicious purposes. They focus 
specifically on a solution to accurately detect and identify 
miniature UAVs at long distances in real-time. They used the 
PANet algorithm as a backbone for their model, which they 
tested against other detection algorithms to evaluate its 
effectiveness. They used two datasets. One consists of 7,200 
images of six different types of UAVs, such as Anafi Extended, 
DJI-Phantom, DJI-FPV, EFTE410S, Mavic-Ent, and Mavic-Air 
at various altitudes and environments. The second dataset is 
focused on payload identification and includes 3,600 images of 
medical supplies, spy cameras, sealed packages, containers, 
guns, food items, missiles, and explosives. The authors report 
their model achieved an average mAP of 82.75%, sensitivity of 
87.97%, specificity of 47.1%, G-mean of 63.38%, and an F1-
score of 82.75%.  

In [19], the authors proposed the use of transfer learning to 
train a model to detect and classify UAVs to prevent the 
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malicious use of UAVs. They test multiple kinds of transfer 
learning classification algorithms against each other, including 
Inception V3 and ResNet 101. Their dataset included multiple 
images of types of UAVs, birds, kites, and landscapes. The 
categories of both UAV positive and negative images are 
10,080. They found that Inception V3 yielded superior results 
with an accuracy of 96.82%, precision of 96.75%, and recall of 
96.98%. In [20], the authors proposed a model that is capable of 
detecting and identifying swarms of miniature UAVs in order to 
combat terrorist and military UAV activity. Their model was a 
modified YOLOv5 object detection algorithm, which they tested 
against Visual Geometry Group 16 (VGG-16), GoogleNet, and 
MobileNet. Their custom dataset consisted of images of DJI-
Phantom, Mavic-Air, and Mavic enterprise drones in various 
conditions, including cloudy, sunny, and evening environments. 
They added images of birds downloaded from Kaggle to 
improve their dataset and reach a total of 1,000 images. They 
split this data into the 70:20:10 ratio for training, testing, and 
validation respectively. They found that their proposed 
YOLOv5 model achieved the best results, including a precision 
of 94.30%, recall of 100%, and F1-score of 97%. These results 
were superior to those produced by the other models tested. 

More literature demonstrates how AI has been used for 
visual detection in other fields. In [21], the authors proposed 
using an AI model to detect and classify types of brain tumors 
to expedite diagnosis, increase accuracy, and reduce the cost of 
such a procedure. They used a Support Vector Machine (SVM) 
with Rectified Linear Unit (ReLU) activation function trained 
on the MICCAI BraTS 2018 dataset, which consists of 40,300 
images. 24,180 of these were High-Grade Glioma cases, 16,120 
were Low-Grade Glioma Cases, and 4,250 had no tumors. They 
tested SVM against Multilayer Perception (MLP), Random 
Forest (RF), and Naïve Bayes (NB), and found SVM had 
superior results, producing a maximum accuracy of 96.19%, 
precision of .958, recall of .851, and an F1-score of 0.870. In 
[22], the authors proposed a deep-learning hybrid framework 
that is able to detect objects to aid the navigation of self-driving 
cars. They use a YOLOv4 model trained on the Berkeley 
DeepDrive 100k (BDD100k) dataset, which consists of 70,000 
images containing various objects with labels reflecting a 
multiclass system, including pedestrians, traffic lights, and other 
vehicles. Their model was tested against Single-Shot Detector 
(SSD), Wasserstein Loss-based Model for Object Detection 
(WLOD), and unmodified YOLOv3 and YOLOv4. They 
conducted their experiments on an Ubuntu machine powered by 
an Intel Core i7-5930K, which yielded an mAP of 52.7, which 
is 2.6 greater than the next highest-performing model tested, 
which is YOLOv4. One limitation of this model is that it 
struggles to perform as well in inclement weather.  

In [23], the authors proposed an AI-enabled detection system 
for use aboard UAVs for the purpose of detecting traffic objects 
and predicting pedestrian behavior in order to mitigate traffic 
accidents. They use a Feature Fusion and Scaling-based SSD 
(FS-SSD) network trained by the Car Parking Lot (CARPK) 
dataset and Stanford Done Dataset (SDD), which consisted of 
69,673 multiclass images including captures of pedestrians, 
bikers, and cars. They trained their FS-SSD model against many 
other models, including Faster R-CNN, YOLOv3, and multiple 
variations of SSD. They report their FS-SSD model achieved a 

maximum mAP of 66.42%, which outperformed the other 
models by at least 4%. One limitation of this study is that, 
despite being the most effective model tested, the model seems 
to trade Frames Per Second (FPS) to achieve superior results, 
which places a limitation on performance. 

III. DATASET AND METHODOLOGIES 

A. Dataset Description 
The dataset used in this study contains 224x224x3 images of 

UAVs conducting various maneuvers and from different angles 
and clear sky with landscape. The UAVs in the images are many 
different types of COTS UAVs. 2,000 images make up this 
dataset, in which an AI-powered model was trained, tested, and 
validated. There are 1,000 images of UAVs and 1000 images 
containing no UAVs. This dataset was split into the 70%-20%-
10% ratio for training, testing, and validation respectively. The 
images form a multiclass dataset, the labels being either “Drone” 
or “No Drone.” The images with UAVs have skies as the 
background and the images without UAVs are of clear skies, 
some of which have some foreground elements and landscape. 
All of these images are in grayscale. Figure 1 includes some 
sample images from the dataset to demonstrate what the images 
generally look like.  

  

  

Fig. 1. Four sample images from the dataset. The two on the left contain UAVs, 

the two on the right contain no UAVs and only clear skies and some landscape. 

B. Convolutional Neural Networks 
Convolutional Neural Networks (CNNs) are artificial 

intelligence models that are inspired by the way the human brain 
functions. It uses many layers of connected nodes, which are 
called neurons, with different weights and parameters to 
generate outputs in response to different inputs. These networks 
are a subset of Artificial Neural Networks (ANNs), which 
consist of at least three layers. As shown in Figure 2, these are 
the input layer, the hidden layer(s), and the output layer. 
Although three layers are the minimum, there is no upward limit 
on the number of layers a CNN can have (aside from 
technological limits). As these networks are trained, the model 
self-optimizes itself by adjusting the weights of each neuron in 
the network [24].  
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CNNs were designed specifically for the purpose of image 
processing and detection of patterns or objects using pixel values 
as inputs. The discernable factor that makes a CNN distinct is 
the specific layer types in addition to input layers. These are 
convolutional layers, pooling layers, and fully-connected layers. 
The convolutional layer uses the weights at each node to 
determine outputs. Pooling layers perform down sampling to 
reduce the number of parameters within the activation. Fully-
connected layers produce classification scores based on outputs 
[24]. 

 
Fig 2. An example of a minimalistic three-layered neural network. 

C. Transfer Learning 
Two common hurdles to AI model development are the time 

and amount of data required to sufficiently train a model. The 
time required may not fit the timeline of researchers or there may 
not be enough data readily available to train and test the model. 
One common solution is transfer learning. As shown in Figure 
3, transfer learning is the concept of expediting the development 
of a solution to one problem by using knowledge gained from 
the solution of another problem. In the field of AI, transfer 
learning is the practice of taking a model generated during 
another study and using it to prototype a new model [25]. 

 
Fig 3. A diagram illustrating the difference between traditional machine 
learning and transfer learning. 

 

There are six types of transfer learning. Domain Adaptation 
is where the marginal probability distributions are different, but 
features are similar between the target and source. Domain 
Confusion is when models learn domain-invariant features, 
which improves transferability. Multitask learning is when the 
model learns both target and source tasks are learned 
simultaneously. One-Shot Learning is when a model tries to 
generate an accurate output with very little exposure to data. 
Zero-Shot learning is when a model learns a new concept by 
being exposed to unlabeled data it has never seen before. Meta-
Learning is the of models “learning to learn” and using only 

prior knowledge to optimize themselves at performing new tasks 
[25].  

D. Algorithms 
In this project, we explore the following deep-learning 

algorithms. 

GoogleNet is an inception-based ML model used for object 
detection and identification in images. It was introduced in 2014 
by Google and features 22 layers in its neural network. The 
aspect of GoogleNet’ S relatively unique inception model is its 
one-dimensional series configuration. As shown in Figure 4, 
nine of these inception models make up the GoogleNet 
architecture, which dictates the output of the model [26]. 

 

Fig 4. GoogleNet Architecture [26]. 

AlexNet is an ML model used for object detection in images. 
It was introduced in 2012 by Alex Krizhevsky et al. It is 
comprised of 8 layers, which are shown in Figure 5. The first 
five are convolutional and the remaining are all fully connected. 
It uses a ReLU activation function, which is applied to every 
fully connected and convolutional layer in the model. The output 
layer traditionally has 1,000 nodes for the classification of 
objects [26]. 

 

Fig 5. AlexNet architecture [26]. 

ResNet 18 and ResNet50 are Convolutional Neural 
Networks (CNNs) created to solve the vanishing gradient 
problem. This problem occurs in deep networks and causes the 
loss function to calculate gradients as zero, resulting in the 
values of weights never changing. In ResNet models, gradients 
flow through skip connections backward from lateral layers to 
initial filters. As shown in Figure 6, each layer is made up of 
many blocks, each with its number of operations. The primary 
difference between ResNet 18 and Resnet 50 is the number of 
layers, which have 18 and 50 layers respectively [27]. 
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Fig 6. Basic ResNet architecture [27]. 

VGG16 and VGG55 are the two other CNNs selected for 
this project. VGG (Visual Geometry Group) utilizes blocks 
consisting of 2D convolution and Max Pooling layers. VGG16 
is an improvement of AlexNet and uses 3x3 filters instead of 
AlexNet’s larger filters, which are the smallest size possible to 
capture vertical and lateral information. It has a simple 
architecture but contains a robust 138 million parameters. The 
architecture consists of an input layer, convolutional layers, 
ReLU activation, hidden layers, pooling layers, and fully 
connected layers., which are shown in Figure 7. As with ResNet, 
VGG16, and VGG55 have 16 and 55 layers respectively [28]. 

 

Fig 7. Basic VGG Architecture [28]. 

IV. RESULTS 

This experiment was set up for 10 epochs per ML model. 
GoogleNet achieved the highest precision, recall, and F1 score, 
all of which was 99.5%. It also achieved a test accuracy of 
98.44%. ResNet18 was the second best, achieving a precision, 
recall, and F1-score of 98.5% and a test accuracy of 97.66%. 
ResNet50 was the third best, achieving a precision of 97.6%, a 
recall, and F1-score of 97.5%, and a test accuracy of 97.6%. 
Table I displays the results of the experiment. 

Table I. Comparison of the results of the experiment of using GoogleNet, 
ResNet 18, and ResNet 50 transfer learning models to detect UAVs. 

Figures 8 and 9 illustrate validation learning curves for 
accuracy and loss using GoogleNet. The curve demonstrates an 
ideal saturation point by showing accuracies approaching 100% 
and approaching a loss of 0. This reinforces that our model does 
not suffer from any overfitting or underfitting issues. 

 

Fig 8. GoogleNet transfer learning-based training/validation learning curves 
depicting accuracy. 

 

Fig 9. GoogleNet transfer learning-based training/validation learning curves 
depicting loss. 

Figures 10 and 11 illustrate validation learning curves for 
accuracy and loss using ResNet18. The curve demonstrates an 
ideal saturation point by showing accuracies approaching 100% 
and approaching a loss of 0. This reinforces that our model does 
not suffer from any overfitting or underfitting issues. 

Fig 10. ResNet18 transfer learning-based training/validation learning curves 
depicting accuracy. 
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ResNet50 0.976 0.975 0.975 0.061 97.66 
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Fig 11. ResNet18 transfer learning-based training/validation learning curves 
depicting loss. 

Figures 12 and 13 illustrate validation learning curves for 
accuracy and loss using ResNet50. The curve demonstrates an 
ideal saturation point by showing accuracies approaching 100% 
and approaching a loss of 0. This reinforces that our model does 
not suffer from any overfitting or underfitting issues. 

Fig 12. ResNet50 transfer learning-based training/validation learning curves 
depicting accuracy. 

 

Fig 13. ResNet50 transfer learning-based training/validation learning curves 
depicting accuracy. 

V. CONCLUSION 

Consumer-grade Unmanned Aerial Vehicles (UAVs) are 
becoming more common capabilities on the modern battlefield, 

finding use by both formal standing armies and non-state 
sponsored organizations with small budgets. The threats posed 
by these UAVs create new challenges that militaries must adapt 
to ensure soldiers are protected and mission completion is 
possible despite the threat of UAV interdiction. In this paper, we 
propose an AI object detection model that is capable of 
identifying UAVs in both the visible spectrums and 
distinguishing them from clear sky images with landscape. This 
model can be used as a targeting system for anti-UAV 
countermeasures. A newly developed dataset was used that has 
1000 images containing UAVs and 1000 images of clear sky 
with no UAVs.. The models we tested were ResNet18, 
ResNet50, and GoogleNet. GoogleNet achieved the best results, 
yielding a precision of 0.995, recall of 0.995, F1-score of 0.995, 
and test accuracy of 98.44%. These results and the initial dataset 
present a good base for researchers to explore and design a 
practical solution for defense against small drone attacks.  

The information gathered from this project can be used as a 
start for more research to develop counter-UAV systems that can 
be deployed on military installations and vehicles. The dangers 
to military personnel posed by hostile UAVs are broad, ranging 
from enemy intelligence gathering to enemy attacks on military 
assets via UAV-mounted munitions. By using the models tested 
or a successor to them, a targeting system can be developed for 
a capability that can spot, identify, and possibly even destroy 
hostile UAVs before they can inflict any harm. 
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