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Abstract—Automated grading of SQL queries is a challenging
task due to the complexity of the language and the variety of
acceptable solutions for a given problem. In this paper, we propose
a novel approach that leverages deep learning with a BERT
model to understand the syntax and semantics of SQL statements.
By training BERT on a dataset of SQL queries and their
corresponding grades, we create a model that can automatically
grade new questions accurately. Our experiments demonstrate that
the proposed methodology achieves high accuracy and consistency
in grading SQL queries, outperforming existing state-of-the-art
models. Furthermore, we provide an analysis of the model’s
explainability, revealing a new capability that can be extremely
beneficial for understanding the decision-making process. Overall,
our work demonstrates the potential of deep learning with BERT
for improving the efficiency and accuracy of SQL query grading.

Index Terms—bert, sql, natural language processing, machine
learning, deep learning

I. INTRODUCTION

As is true in almost every field of computer science, grading

multiple sets of SQL queries can prove to be time-consuming

and challenging. The tediousness of grading hundreds of

queries can quickly become daunting. The fact that there are

usually very many ways to construct correct queries provides

another set of challenges. Awarding consistent partial credit to

a wide variety of incorrect queries introduces another level of

complexity. These challenges are significant when it comes to

hand-grading assignments; they become even more so when

trying to automate the process of grading these queries.
Automating the grading of SQL queries can save a lot of

time and effort, but systems that do so often lack the capacity to

award credit consistently across a variety of query types. These

automated systems generally fall into one of two categories:

static analysis systems and dynamic analysis systems [1].
The general approach for static analysis systems is to

compare the structure of the submitted query to the structure of

(one of) the answer-key queries. This means that the grading

system does not actually run the submitted query. Instead, it

analyzes the query itself. This approach requires that multiple

answer-key queries be provided, because of the wide variety

of possible correct answers. A submitted query would be

compared to each answer-key query, generating many possible

scores. The system would then award the highest of these

scores to the submitted query.

Dynamic analysis systems, on the other hand, actually run

the submitted queries against a variety of fixed data sets and

compare the results to the answer-key results. Because only

the results are being compared, this approach can suffer from

the fact that it often cannot accurately determine whether a

query is correct, since incorrect queries could produce what

appear to be correct results. For example, consider the case

where the answer is an empty table – there are infinitely many

queries that produce an empty table. Dynamic analysis systems

are very good at identifying incorrect queries, however.

Recent systems have combined static and dynamic analysis

into a hybrid approach in an attempt to avoid the problems

associated with each and to yield better results, especially in

terms of awarding partial credit. Awarding partial credit is

important, of course, but developing a system to do so in a

consistent, equitable and meaningful way is quite challenging.

Consistency is important so that partial credit is evenly awarded

across many sets of responses. Partial credit must be equitable

– an extra column in the results should likely result in a smaller

penalty than a query with significant logical errors, but the

correct number of columns in the answer. The amount of partial

credit must also be meaningful, so that queries that are very

close to correct earn the most partial credit possible.

Although automated grading systems are available, many

lack the sophistication to accurately and consistently award

credit for each query. This paper proposes using deep learn-

ing, specifically bidirectional encoder representations from

transformers (BERT) [2], to model SQL statements to address

this challenge. BERT is a state-of-the-art language model with

outstanding performance in various natural language processing

tasks [3]. By training BERT on a dataset of SQL queries

and their corresponding grades, we can create a model that

automatically grades new questions accurately. The proposed

model takes advantage of BERT’s pre-training on a large corpus

of text, enabling it to learn the complex syntax and structure of

SQL statements. Using BERT allows us to avoid the limitations

of traditional rule-based systems [4] and achieve state-of-the-

art performance in automatic SQL query grading. Therefore,

leveraging deep learning with BERT in this area is necessary

to improve the efficiency and accuracy of SQL query grading.

This paper aims to address the challenges above by proposing

a machine learning-based approach for the automated grading
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of SQL queries using the BERT model. The proposed approach

leverages the power of BERT’s contextualized word embed-

dings to model the syntax and semantics of SQL statements.

The paper aims to demonstrate that this approach can achieve

high accuracy and consistency in grading SQL queries while

reducing the time and effort required for manual grading. The

paper also compares the performance of the proposed BERT-

based approach with existing state-of-the-art models based on

a combination of self-attention mechanism and convolutional

neural networks [5], [6], and show that the BERT-based

approach outperforms these systems in terms of accuracy.

The rest of the paper is organized as follows. The related

work is reviewed in Section II. Section III presents our

methodology, including a transformer training description and a

neural architecture layout. Section IV discusses an overview and

evaluation of our experiments, including our evaluation metrics.

Our results are analyzed in Section V, where we compare

previous approaches and a baseline model. Conclusions are

presented in Section IV.

II. RELATED WORK

A. Literature review of existing approaches for automated
grading of SQL statements

An early example of the static analysis approach, described

by Aho et al. [7], created a matrix based on various relational

expressions that described the query, then used those expres-

sions to construct a variety of equivalence classes. Another

approach by Štajduhar et al. used string similarity metrics to

compare submitted queries with answer-key queries [8]. The

Cosette system, proposed by Chu et al., encoded queries into

logical expressions in order to determine whether they were

logically equivalent, using an unbound semiring to determine

the level of equivalence. This approach allowed the system to

provide more feedback to the student [9].

SQLator [10], SQLify [11], and AsseSQL [12] are

frequently-cited early examples of the dynamic analysis ap-

proach. SQL Tester, a system developed by Kleerekoper et

al. [13], does a record-by-record, case-sensitive comparison of

the submitted query results with the correct results.

Chandra, et al., have proposed the XData system [14], a

hybrid approach that uses dynamic analysis to identify incorrect

answers, then uses static analysis to evaluate the SQL query

to determine how closely it matches a correct query. They use

edit-based grading to award partial credit based on the number

of edits required to transform a student submitted solution

into a correct solution (equivalent to one of the “answer key”

solutions). Wang, et al., also describe a hybrid system that

takes a similar approach [1].

B. Overview of deep learning approaches in the context of
automated grading

Deep learning has become an increasingly popular ap-

proach in automated grading, as it offers the potential for

improved accuracy and consistency of grading [15]–[18].

These approaches can help eliminate the burden of grading

significant test questions and facilitate performing even more

assessments during lectures, especially when the number of

students is large. Deep learning models have been used for

generating paragraph embeddings, which are used for short

answer automatic scoring [15]. The choice of paragraph

embedding model influences accuracy in the task of automated

scoring. A hybrid approach that optimizes a deep learning

technique called LSTM (Long Short Term Memory) with a

recent optimization algorithm called a Grey Wolf Optimizer

(GWO) has been proposed for grading short-answer questions

automatically [16]. The proposed system is optimized to avoid

the problem of overfitting in forecasting the students’ scores

to improve the learning process and save instructors’ time

and effort. Deep learning architectures with a combination

of Convolutional Neural Network (CNN) and Bidirectional

Long Short Term Memory (BiLSTM) have been proposed

for automated evaluation of handwritten answer scripts [17].

In particular, the following three recent papers showcase the

use of more advanced and sophisticated deep learning in this

context.

In 2019, Sung et al. [19] focused on pre-training BERT on

domain-specific resources for short answer grading. The authors

use domain-specific resources, such as textbooks or curated

datasets, to enhance the pre-training process of BERT. The

pre-trained BERT model is then fine-tuned on a dataset of short

answers and corresponding scores. The paper shows that this

pre-trained BERT model achieves state-of-the-art performance

on short answer grading tasks.

In 2021, the authors in [20] proposed an interpretable

deep learning system for automatically scoring requests for

proposals (RFPs). The system is based on a deep neural network

architecture that incorporates attention mechanisms, allowing

for the identification of essential words and phrases in the RFPs.

The system also employs a novel regularization technique to

improve its interpretability. The authors show that the proposed

system achieves high accuracy and provides insights into the

key factors contributing to a successful RFP response.

Most recently, in 2022, Prabhu et al. [21] proposed a hybrid

automated essay evaluation approach combining the BERT

model with feature engineering techniques. BERT is a powerful

language model pre-trained on large corpora and can be fine-

tuned for specific tasks. The authors use BERT to extract

meaningful features from essays, such as their semantic and

syntactic features, while feature engineering techniques are

employed to extract additional features, such as sentence

length, vocabulary richness, and readability. The resulting essay

representation is then used to predict the essay scores. The paper

shows that this hybrid approach outperforms other automated

essay evaluation systems regarding accuracy and consistency.

These papers demonstrate the potential of deep learning

approaches, such as BERT and neural network architectures

with attention mechanisms, in the context of automated grading.

These approaches have shown to be effective in tasks such as

essay evaluation, short answer grading, and RFP scoring.
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TABLE I
SAMPLE DATA EXTRACTED FROM DATASET

Submitted Answer Correct? Remark Grade
SELECT DISTINCT s.snum
FROM PARKS P, SNACKS S, DELIVERS D, VENDORS V
WHERE V.VNum = D.VNum 1 Correct 100
AND P.PNum=D.PNum
AND S.SNum=D.SNum;
SELECT V_TABLE.CITYCREATED
FROM VACCINES V_TABLE, INGREDIENTS I_TABLE
WHERE V_TABLE.CITYCREATED = I_TABLE.SOURCELOC
UNION
SELECT I_TABLE.SOURCELOC
FROM INGREDIENTS I_TABLE, DISEASES D_TABLE 0 Partially 20
WHERE I_TABLE.SOURCELOC = D_TABLE.ORIGIN
UNION
SELECT D_TABLE.ORIGIN
FROM DISEASES D_TABLE, VACCINES V_TABLE
WHERE D_TABLE.ORIGIN = V_TABLE.CITYCREATED;
Select count(*)
From writer_award was, writer w, person p
Where wa.title=w.title 1 Correct 100
and w.id=p.id
and p.first_name=’Woody’
and p.last_name=’Allen’;
.
.
.

.

.

.
.
.
.

.

.

.
Total sample count: 3361 Avg: 0.5956 Total Distinct: 4 Avg: 84.91

C. Dataset description and preprocessing

The dataset employed in our research pertains to SQL

statements used for grading automatization, obtained from

a publicly available database [22], and combined with internal

data. The database schema of the public dataset contains

tables with anonymous student submissions, feedback, grades,

pass/fail flags, and other pertinent information. We have

extracted valuable information from this dataset and com-

bined it with our own data, with a few examples shown in

Table I. The table illustrates that the dataset has 3361 distinct

samples of student submissions with a class imbalance in

which, on average, 59.6% of the submissions are graded

as correct. Four different remarks are associated with the

submissions, namely Correct, Partially Correct,
Non-Interpretable, and Cheating, and the average

grade of the assignments is 84.9. The BERT model will be

fine-tuned on these SQL statements, which vary in length and

are tokenized to a vocabulary of 30,522 tokens since this is

the vocabulary size of BERT. The model is tokenized using

the same tokenizer used to train BERT; the fine-tuning process

is described in the next section.

III. METHODOLOGY

In this section, we describe our full methodology. We divide

the discussion of our transformer-based approach depicted

in Fig. 1, the explanation of the pre-training and fine-tuning

process, and finally, a discussion about the model architecture

and hyperparameters.

SQL
Statements

BERT
Fine-Tuned

110M Params

Correct
(Binary)

Remark
(Multiclass)

Grade
(Regression)

Fig. 1. Block Diagram for SQL Classification using BERT

A. Proposed transformer-based approach

As shown in the dataset description, we want to predict,

given a SQL statement, if it is Correct, what would have been

its Remark and a numeric value to its Grade. After trying

several approaches and different SQL-based transformer-based

encoders in Hugging Face, we decided to use the pretrained

language model BERT. Specifically, we worked with the variant

bert-base-cased,1 which has twelve layers and 768 hidden units.

The main reason for this decision was that the difference in

performance with other models was low, and we could obtain

an easier and more visible explainability from it using tools

1https://huggingface.co/bert-base-cased
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like Captum.2 We divide the problem into three separate tasks:

1) Binary Classification: Predict if the SQL statement is

Correct.
2) Multiclass Classification: Predict the SQL statement

Remark.

3) Regression: Predict the SQL statement Grade.

Our study employed the trainer pipeline from Hugging Face

and utilized the BERT-cased model as the encoder of the SQL

statement to address three distinct tasks. Our approach involved

the classic BERT encoding of a text, followed by the use of

the CLS token for classification and its encoding as the base

for regression. To address the three tasks, we developed three

separate BERT-cased finetuned models tailored to each task.

The finetuning process was conducted over six epochs for each

instance in its corresponding task.

B. Model architecture and hyperparameters
The BERT architecture has been successful because it

can learn powerful contextual embeddings for words in a

sentence [23]. BERT considers each word’s context in the

sentence and learns how words relate to each other using a

multi-head self-attention mechanism [23]. BERT is pre-trained

on a large corpus of text using masked language modeling

and next-sentence prediction tasks, which allows the model

to capture a wide range of semantic relationships between

words [23]. Fine-tuning the pre-trained BERT model on a

specific task further improves its performance [24].
Hyperparameter tuning is a crucial step in the fine-tuning

of BERT models. BERT is a pre-trained language model that

has achieved remarkable results in many natural language

processing (NLP) tasks [25]. Fine-tuning BERT involves

adapting the pre-trained model to a specific task by training

it on a task-specific dataset. Hyperparameters are parameters

set before the training process begins and can significantly

impact the model’s performance. Therefore, selecting optimal

hyperparameters is essential for achieving the best possible

performance [26].
Several studies have investigated the importance of hyperpa-

rameter tuning in the fine-tuning of BERT models. For instance,

Mosbach [27] found that fine-tuning is an unstable process, and

training the same model with multiple random seeds can result

in a large variance in the task performance. Li [28] re-examined

several common practices of setting hyperparameters for fine-

tuning and found that some are sub-optimal. Xu [29] proposed

two effective mechanisms, self-ensemble and self-distillation,

to improve the fine-tuning of BERT. Therefore, we empirically

determined that the hyperparameters in Table II are sufficient for

successful training. The table shows the main hyperparameters

for the three models during the training process. In our case,

the three models were trained with the same hyperparameters

in order to facilitate reproducibility.

IV. EXPERIMENTAL SETUP

The experimental methodology utilized in this study involved

employing the trainer pipeline and application programming

2https://captum.ai/tutorials/Bert SQUAD Interpret

TABLE II
HYPERPARAMETERS USED FOR TRAINING THE THREE MODELS

Hyperparameter Value
Training Epochs 6
Train batch size 8
Learning Rate 0.00002
Weight Decay 0.01
Optimizer Adam

interface (API) provided by Hugging Face. The same pipeline

was utilized for all three tasks. The sole variation was the

number of labels considered by the BERT-cased encoder model

and a distinct version of the dataset used for each specific task.

To ensure reliable results, the dataset was randomly partitioned

into training and testing subsets in a 70/30 ratio for each task.

The performance of the model was assessed using various

evaluation metrics for each task, including but not limited to

the following:

1) Binary Classification: Micro F1 (Accuracy), Balanced

Accuracy, F1, Precision, Recall.

2) Multiclass Classification: Micro F1 (Accuracy), Bal-

anced Accuracy, Macro F1, Weighted F1, Precision,

Recall.

3) Regression: Squared Mean Error, Mean Absolute Error,

Coefficient of Determination and Explained Variance.

A. Baseline model for comparison

Our baseline model is the one introduced in [6]. The paper

presents a lightweight neural architecture of a model for

predicting the correctness, grade, and grader’s remark of SQL

statements. The architecture consists of an embedding layer,

a self-attention CNN with a Luong-style layer and global

average pooling, a dropout layer, a batch normalization layer,

a bottleneck dense layer, and three different groups of outputs,

each with a batch normalization layer and dense neural units.

The model learns to optimize the learned embeddings through

the self-attention component, and the bottleneck dense layer

enables visualization of the learned representations in two

dimensions. The outputs consist of a model for predicting

correctness (with one neural unit), a model for predicting the

grader’s remark (with four neural units), and a model for

predicting the grade (with one neural unit).

B. Training Methodology and Hardware Specifications

In order to evaluate the performance of our proposed model,

we partitioned the dataset into two distinct sets: 70% for training

and 30% for testing. We conducted the training process for a

total of six epochs, utilizing the hyperparameters outlined in

Table II.

To execute our experiment with optimal computational

efficiency, we employed Google Colab, which provided us with

access to a state-of-the-art NVIDIA GPU A100 that boasts

a total memory capacity of 40 gigabytes. By leveraging this

powerful hardware infrastructure, we were able to expedite the

training process and obtain reliable performance metrics in an

efficient and timely manner.
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V. RESULTS AND ANALYSIS

We evaluated the proposed model on the testing set and

report the results in Table III. To measure the performance of

the classification tasks, we used standard evaluation metrics

such as precision, recall, F1-score, and balanced accuracy.

These metrics are defined as follows:

Precision is the proportion of true positives among the

predicted positive samples, and is computed as:

Precision =
TP

TP + FP
, (1)

where TP represents true positives and FP represents false

positives.

Recall is the proportion of true positives among the actual

positive samples, and is computed as:

Recall =
TP

TP + FN
, (2)

where FN represents false negatives.

F1-score is the harmonic mean of precision and recall, and

is computed as:

F1-score =
2× Precision×Recall

Precision+Recall
. (3)

Balanced accuracy is the average of sensitivity and specificity,

and is computed as:

Balanced Accuracy =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
, (4)

where TN represents true negatives. We report the values

of these metrics for each task in Table III. For measuring

performance on the dataset in the case of regression we use

the coefficient of determination (R2), explained variance (EV),

mean absolute error (MAE), and mean squared error (MSE).

These metrics are defined as follows:

The coefficient of determination measures the proportion of

variance in the dependent variable that is predictable from the

independent variables. It is calculated as:

R2 = 1−
∑n

i=1(yi − ŷi)2∑
i = 1n(yi − ȳ)2

, (5)

where yi is the true value of the ith sample, ŷi is the predicted

value of the ith sample, ȳ is the mean of the true values, and

n is the number of samples.

Explained variance measures the proportion of variance in

the dependent variable that is explained by the independent

variables. It is calculated as:

EV = 1− V ar(y − ŷ)

V ar(y)
, (6)

where y is the true value of the dependent variable, ŷ is the

predicted value of the dependent variable, and V ar is the

variance.

Mean absolute error measures the average absolute difference

between the predicted and true values. It is calculated as:

MAE =
1

n

n∑
i=1

|yi − ŷi|, (7)

where yi is the true value of the ith sample, ŷi is the predicted

value of the ith sample, and n is the number of samples.

Mean squared error measures the average squared difference

between the predicted and true values. It is calculated as:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2, (8)

where yi is the true value of the ith sample, ŷi is the predicted

value of the ith sample, and n is the number of samples.

A. Comparison with baseline model

The present study compares the proposed model with a

baseline model introduced in [5], [6]. The baseline model

employs a convolutional neural network with self-attention,

designed for inference efficiency and consisting of only 90,926

parameters. In contrast, BERT has a much larger parameter

count of 110 million.

The baseline model adopts a multitask learning approach,

where a single model shares the main parameters of the body

and alternates between the classification and regression heads

during training. In contrast, the proposed model involves a

separate BERT fine-tuned for each classification and regression

task. It is worth noting that the baseline model and its

performance metrics, as shown in Table III, were reported

using cross-validation. On the other hand, our proposed model

uses a simple 70/30 data split for evaluation purposes.

Our results, as shown in Table III, demonstrate that the

proposed model outperforms the baseline model on all classifi-

cation and regression tasks, as we discuss next.

B. Analysis of the model’s performance

The performance of the proposed model is analyzed in this

section, and the results are presented in terms of accuracy,

precision, recall, F1-scores, balanced accuracy, and error

metrics. In the binary classification task, the proposed model

outperformed the baseline model by 11% in terms of accuracy.

Moreover, precision, recall, and F1-scores also showed superior

performance compared to the baseline.

For the multi-class classification task, the proposed model

showed a significant increase in terms of balanced accuracy,

with predictions that were above and beyond random chance.

Specifically, the model showed a +56% increase in balanced

accuracy compared to the baseline. The precision, recall, and

F1-scores also showed superior performance.

In the case of regression, the proposed model outperformed

the baseline by predicting with an average error of ±0.015
of the target grade, while the baseline was off by ±0.233 on

average. The R2 and EV scores also supported the superior

performance of the proposed model. However, the baseline

was better in terms of mean squared error (MSE), which may

indicate that the proposed BERT-based model is susceptible

to outliers in the data. Future studies may investigate methods

to address this limitation and improve the performance of the

proposed model in regression tasks.
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TABLE III
CLASSIFICATION AND REGRESSION PERFORMANCE ANALYSIS ON THE TESTING SET

Class Evaluation Metrics
Being Precision Recall F1-score Support
Evaluated CNN+Attn BERT CNN+Attn BERT CNN+Attn BERT CNN+Attn BERT
Incorrect 0.76 0.85 0.80 0.94 0.78 0.89 282 360
Correct 0.85 0.96 0.82 0.91 0.84 0.94 393 649

Accuracy 0.81 0.92 675 1009
Balanced Accuracy 0.81 0.92 675 1009

Cheating 0.0 1.0 0.0 1.0 0.0 1.0 6 1
Correct 0.78 0.95 0.80 0.91 0.79 0.93 393 632
Non Interpretable 0.26 0.74 0.09 0.85 0.13 0.79 57 20
Partially Correct 0.51 0.85 0.58 0.90 0.54 0.87 219 356

Accuracy 0.66 0.90 675 1009
Balanced Accuracy 0.37 0.93 675 1009

Regression R2 EV MAE MSE
ŷ = Grade 0.148 0.62 0.421 0.62 0.233 0.015 0.071 0.122

Overall, the analysis of the model’s performance indicates

that the proposed BERT-based model is effective in classi-

fication and regression tasks and outperforms the baseline

model. These results support the use of BERT-based models

in educational data mining tasks, as they provide superior

performance compared to traditional models.

C. Discussion of the model’s strengths and limitations

Explainability is one of the main model’s strengths beyond its

superior performance compared to the baseline model. Using

attribution score analysis, we can visualize the importance

of certain elements in the SQL statements responsible for

the model stimulation in favor of a specific outcome. To

illustrate this capability, we used the Captum3 tool. Captum

supports explainability in transformer-based models employing

gradient-based methods, which use the gradient of the model’s

output with respect to the input features to determine their

importance. Particularly, in Captum the methods used are

“integrated gradients” (IGs) and a variation called “layer

integrated gradients” (LIGs). IGs are defined as the path integral

of the gradients along the straight line path from the output

y to the input x [30]. LIGs are a variant of IGs that assign

an importance score to layer inputs or outputs, depending on

whether we attribute to the former or the latter.

For illustration, Table IV shows the explainability obtained

from our model using the Captum tool in the multiclass-

classification task. We offer two examples per class. We

believe the explainability in this class is the most interesting,

although we can obtain the same type of explainability in

binary classification and regression tasks.

All the examples included in Table IV are obtained based

on the visualization provided by the Captum tool. The table

includes the true “label” and the probability (a.k.a. “logit”) that

was assigned to the class during inference time. The “attribution

score” is the numeric value obtained after computing the LIGs

of the output class with respect to all the token inputs. The red

color in a token shows a negative contribution, the green color

3https://captum.ai/tutorials/Bert SQUAD Interpret

in a token illustrates a positive contribution, and the white color

is a neutral contribution. The darker the color, the stronger

the negative or positive contribution. As shown, the attribution

scores occur on the tokens obtained using the BERT-tokenizer,

which can sometimes be word-piece tokens.

To discuss some interesting cases, the correct statements

in the first and second row of Table IV show how the model

emphasizes the SQL instructions and the usual type of structure

that should come after each instruction. In the case of the

partially correct statements, in the third row, we can appreciate

how the model mainly focuses on the HAVING clause and

strongly on the inequality signed used, which is the reason

why this statement is not completely correct. In addition, the

fourth row of the table shows a partially correct statement

where the model identified as the main point for its decision

on the ORDER BY clause, the value being used as the ordering

field, and the use of ascending order instead of descending.

Our model is not limited to identifying correct or partially

correct statements. Row five of Table IV shows a wrong

statement that is not interpretable. The model emphasizes

almost the entire statement due to the absence of SELECT and

GROUP BY clauses. Row six illustrates a non-interpretable

statement where the model focuses on every token since the

WHERE clause has no details associated with it. Finally, the

last two rows of Table IV show statements that turn out to be

cheating from students. The model mainly focused on these

cases because of the use of a specific numerical id within the

query.

The limitations of BERT are known [31]; however, there are

some that might be of particular interest to our study. Firstly,

due to the lack of training data, the model’s performance is

limited even after fine-tuning. Secondly, BERT, the underlying

language model, was originally trained on unstructured text

using the Mask Language Modeling and Next Sentence

Predictions task; therefore, it may encounter difficulties in

processing structured text and understanding concepts related

to databases, such as tables and statement relationships. Thirdly,

BERT has a token limit of 512, which may lead to incorrect

predictions for longer SQL queries and a loss of explainability.
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TABLE IV
EXPLAINABILITY OBTAINED FROM THE MODEL USING THE CAPTUM TOOL IN THE MULTICLASS-CLASSIFICATION TASK. TWO EXAMPLES PER CLASS SHOWN

Label Logit
Attribution
Score Word Importance Legend: Negative Neutral Positive

Correct 0.99 2.48

Correct 0.99 5.36

Partially Correct 0.99 1.66

Partially Correct 0.95 1.29

Non Interpretable 0.87 2.41

Non Interpretable 0.85 0.82

Cheating 0.71 2.28

Cheating 0.59 2.27

Lastly, the use of aliases and the fact that multiple words can

refer to the same thing can pose challenges for BERT in terms

of handling synonyms and homonyms, as well as detecting

relationships between names and their corresponding objects

within the SQL statement. These limitations should be taken

into consideration when interpreting the results of this study.

Finally, while ChatGPT has demonstrated impressive natural

language understanding and generation capabilities, it is

unsuitable for our current research project. One of the primary

reasons is the privacy concerns associated with student data.

Given the sensitive nature of this data, using a model like

ChatGPT, which is trained on a vast corpus of internet text,

could potentially lead to privacy breaches [32]. Furthermore, the

lack of explainability and transparency in ChatGPT’s decision-

making process is another significant concern [33]. As of today,

the architecture of ChatGPT is not publicly accessible, which

hinders our ability to understand and interpret the model’s

behavior. This is particularly crucial in our project, where we

aim to provide an analysis of the model’s explainability to

understand its decision-making process. Therefore, for these

reasons, ChatGPT falls outside the scope of our research.

VI. CONCLUSIONS AND FUTURE WORK

The present study proposes a novel methodology for deter-

mining the correctness of an SQL statement. The approach

employs a fine-tuned version of BERT using a mixture of

publicly available and private data. While this extends and

improves our earlier work in creating a lightweight baseline

model [5], [6], to the best of our knowledge, BERT has not been

previously used for the automatic grading of SQL statements.

Our experiments demonstrate the efficacy of the proposed

model, achieving a cross-validated balanced accuracy of 92%

and 93% for the binary and multiclass classification tasks,

respectively. This represents an improvement over the baseline

model by 11% and 56%. The results suggest that the proposed

methodology has the potential to achieve good generalization

beyond the dataset used. When it comes to predicting the grade

using regression, our new model scored higher in the MAE

metric but not so in the MSE metric, this suggests that the

model may be producing grades with large outliers, which will

require further investigation.

Furthermore, analyzing the attribution scores of the model

reveals a new capability of explainability that can be extremely

beneficial. Specifically, visualizing the fundamental reason why

an SQL statement stimulated the multiple attention heads of

BERT provides a means of understanding the decision-making

process of the model.

Based on our prior work and the results presented in this

paper, we can establish that this type of system can effectively

model the problem of automatic grading of SQL statements,

provided sufficient examples for various assignments. Future

work will focus on obtaining more labeled data encompassing

a wider range of submissions and assignments, with the goal of

further improving the model’s performance and generalization

capabilities.
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