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Abstract—Microgrid control is complex due to its need to 
accommodate the intermittence of renewables, balance generation 
with load, transit between grid-connected and islanded modes, and 
maintain reliable power supply to customers. Much research has 
addressed microgrid control complexity in both centralized and 
decentralized settings. This paper presents an intelligent software 
agent control with advanced autonomous capabilities to address 
the intermittent nature of renewables and their integration in real-
world scenarios. Such capabilities include data acquisition, load 
and renewable generation forecasting, energy management, 
scheduling, optimal power flow, and real-time control to maintain 
generation-load balance in a secure and reliable microgrid 
environment. Accurate AI predictive models, machine learning 
algorithms, and non-linear optimization will be at the core 
function of the control agents. 
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I. INTRODUCTION 

The bulk of electric power generation worldwide comes 
from fossil fuels. The planet is, therefore. contaminated with 
carbon dioxide emissions that impact the climate and drive 
extreme weather conditions. Microgrids emerged as alternative 
renewable energy resources that produce green power for 
customers in urban and rural communities [1],[2],[3]. 
Renewable resources are intermittent and bring various 
operation and control challenges, especially when generation 
and load disturbances are abrupt and power outages are severe 
[4]. Such challenges include providing stable and reliable power 
to balance customer load in real-time, maintaining consistent 
voltage and frequency power characteristics, and managing 
operational and economic uncertainties in renewable power 
generation.  

Therefore, microgrid control is complex and requires a high 
degree of real-time coordination and operation [5],[6]. The 
control technologies in conventional utility grids require 
substantial customization and adaptation and often do not meet 
microgrid requirements. Microgrid uncertainties are addressed 
by various technologies that provide power, improve reliability, 
reduce carbon emissions, and lower operational costs through a 
mix of renewable resources, energy storage, and responsive load 
[7].  

This paper introduces a novel intelligent agent control for 
microgrids based on a distributed, coordinated, and optimized 
use of resources in real-time with minimal human intervention. 
We apply research discoveries in AI and energy to make 
microgrids efficient, reliable, resilient, and sustainable. The 

control agents are designed to enable individual solar panels, 
wind turbines, bus inverters, storage batteries, and end-user load 
components to operate and self-organize their controls in real-
time autonomously. This research is in the preliminary phase, 
and further testing and validation are still required. 

The remainder of this paper is organized as follows: Section 
II reviews related research in microgrid control. Section III 
presents a generic microgrid model. Section IV presents the 
architectural design model of agent control. Solar, Wind, Load, 
and Operator Agent Controls are presented in Sections V, VI, 
VII, and VIII, respectively.  Finally, the paper is concluded in 
Section IX.  

II. RELATED RESEARCH 

Various microgrid controls have been presented in the 
research [8],[9], ranging from distributed agent-based to 
centralized cloud-based controls specifically targeted toward 
supervisory controls of utility grids and microgrids. [10] 
provides architectural insights for using SCADA (Supervisory 
Control and Data Acquisition System) controls in smart grid and 
microgrid systems. [11] presents a design of controls that 
includes online monitoring of energy consumption in smart grid 
infrastructure. Multi-agent systems have also been introduced in 
[12] as alternative controls for utility grids with a comprehensive 
review of concepts, platforms, and applications.  

The generic SCADA has tremendous limitations for 
microgrids and may incur large complexity for adaptation and 
customization [13]. It often generates many fault records in an 
hour that require manual analysis [14]. [15] presents multi-agent 
alternatives to operate distributed energy resources in 
microgrids. The general design of multi-agent systems 
comprises several agents working effectively and seamlessly 
[16] and has potential implications for future microgrid systems 
[17]. [18] presents a set of open-source tools for designing 
SCADA by adding new features and increasing acquisition time 
in the context of IoT adoption. These tools are preliminary and 
will need further investigation to check their applicability in the 
microgrid environment [19], and in the broader control 
strategies of renewable energy resources [20].  

III. MICROGRID 
A microgrid is a group of interconnected loads and 

distributed energy resources in a single controllable entity that 
typically transits between grid-connected and islanded modes 
[21]. In a grid-connected mode, the microgrid operates in sync 
with the utility grid, trading in and out power deficit and excess. 
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In an islanded mode, the microgrid thrives on balancing 
generation and load in real-time and maintaining reliable power 
flow and stable voltage and frequency [22],[23].  In remote and 
fragile areas, the islanded microgrids are isolated, have no 
interconnection with the utility grid, and operate as stand-alone 
power systems.  

Figure 1 shows a microgrid's topology consisting of 
renewable wind and photovoltaic (PV) power generating units, 
controllable load, battery energy storage system (BESS), AC 
(Alternating Current)/DC (Direct Current) inverters, AC bus 
system, and a substation to couple with the utility grid. A 
microgrid can also include other resources, such as small-scale 
diesel, fuel cell, or natural gas generating units and electric 
vehicles. We provide a design of an agent control for wind 
turbine, solar PV, load, inverter, BESS, and the system operator 
that manages and operates the microgrid in real-time to ensure 
power availability and reliability.  

IV. AGENT CONTROL 
Agent control is introduced as a technology to transform a 

microgrid into an intelligent and self-organizing system that is 
economical, efficient, reliable, resilient, and sustainable. Solar 
panels or wind turbines are made intelligent nodes to forecast 
short- and long-term power generation actively. Buildings, 
inverters, coupling substations, and battery storage are also 
made intelligent nodes to operate autonomously in various self-
organizing microgrid scenarios.  

The agent control interacts with the microgrid environment 
through an array of input sensors and output controls and 
coordinates with the other agents in a distributed manner. It also 
has a set of indicators to show the status of communication, 
on/off, fault, voltage, frequency, and current. Agents coordinate 
and optimize the use of resources in real-time with minimal 
human intervention. We use machine learning, non-linear 
optimization, and open-source technologies in the architecture 
of the agent control. Figure 2 shows the internal architectural 
design of a generic agent control. The main components include 
the knowledge base, the generic agent model, and agent 
communication.  

Agents perceive the microgrid environment through sensors 
and provides actions through controls. They are designed based 
on their services and degree of perceived intelligence and 
capability. The standard design models are simple, model-based 
reflex, learning, and goal- and utility-based agents. The agent's 
knowledge base is based on a production model of knowledge 
representation in the specific function and interaction with 
declarative rules of conduct. Agents use reliable connection-
oriented TCP/IP protocol with XMPP (..) for communication 
with the other microgrid agents. KQML (knowledge query 
manipulation language) is used for communication and a 
directory service, authentication, tracking, and monitoring are 
used for distributed control and self-coordination. We use 
models of intelligence for different functions and operations of 
the microgrid resources. In the next sections, we give the 
specific models of solar, wind, load, and operator agent controls. 
The design of the battery, and inverter agents are not complete 
at this stage. 

V. SOLAR AGENT CONTROL 

The accurate forecast of the weather and solar radiation 
provides good estimates of PV power, which helps in the 
optimal scheduling of the generation-load balance in the short- 
and long-term timestamps. As shown in Figure 3, the main 
components of the solar agent are prediction modules for 
weather, temperature, radiation, and solar power. Details of 
neural networks and deep learning methods for photovoltaic 
power forecasting are given in [24],[25],[26]. The solar power 
forecast:  is then computed as a function of the solar radiation: 

Fig. 1. A topology of a microgrid 

Fig. 2. Agent architectural design 

Fig. 3. Solar Agent Control 

54



 

G, temperature: T, area of the panel: A, efficiency: �, and 
degradation factor: �   at any given timestamp t, given as: 

� �           (1) 

VI. WIND AGENT CONTROL 

The forecast for wind power:  depends on the wind 
turbine's area: A, air density: ρ, and wind velocity: v intercepting 
A at any given timestamp t, given as: 

�           (2) 

 
The air density and wind velocity can be predicted using 

machine learning using atmospheric, geographic, and 
topographic data and multi-layer backpropagation learning 
algorithms. Figure 4 shows the linkage between these algorithms 
and weather forecasting data models, which largely depend on 
the metrological measurements and the characteristics of the 
wind power plant.  

VII. LOAD AGENT CONTROL 

As shown in Figure 5, the modules of load agent control are 
load forecasting, load shedding, and energy management. Load 
forecasting provides estimates of the power demand at different 
load points (e.g. buildings) in the microgrid in the short- and 
long-term. Time series, neural networks, and wavelet packet 
transform are examples of models used in short-load forecasting 
[27][28]. The inputs are historical data and metrological 
measurements like temperatures, wind, humidity, week or 
weekend day, and hour of the day. 

Load shedding is the primary function of resiliency. 
Reference [29] studies how to protect microgrids when a fault 
occurs in the main grid while continuously supplying the critical 
loads using intelligent control and predictive load shedding 

algorithm. Reference [30] proposes a coordinated load-shedding 
control based on double-Q learning and Markov's decision to 
achieve balance in power supply and demand and stability of 
frequency and voltage during unintentional islanding. Reference 
[31] applies an agent-based model to forecast generation and 
load, optimize demand via load prioritization, and implement 
proper means of shedding and rescheduling.  

The primary goal of energy management is to balance 
generation and consumption in a steady state through strategies 
and tools that maximize efficiency and enhance competitive 
positions [32]. Home automation systems embed these tools and 
strategies to efficiently control home energy consumption and 
increase consumer participation using advanced analytics, 
actionable information, and control features while ensuring ease 
of use, availability, security, and privacy [33]. Energy Balancing 
[34],[35] and load balancing [36] are common strategies of 
energy management. 

VIII. OPERATOR AGENT CONTROL 
The primary goal of the operator agent control is to balance 

generation and load, provide adequate voltage and frequency 
control, and maintain a reliable, stable, and resilient microgrid 
power network. Figure 6 shows three levels of controls: tertiary, 
secondary, and primary control to ensure accurate scheduling 
and optimal power flow that minimizes operating costs while 
maintaining generation-load balance and accurate voltage and 
frequency of the microgrid power.  

The tertiary control includes optimal power flow and 
dispatch functions that identify the day-ahead power schedules 
and the reference setpoints of frequency: Wref and voltage: Eref. 
These points are computed based on the network conditions: N 
and the schedules of active power: P, and reactive power Q. In 
the hour-ahead schedules, the secondary control produces a 
generation-load balance schedule and manages deviations of 
frequency: �W and voltage: �E. These deviations are controlled 
in real-time in the primary control that includes relay protection 
and coordination, frequency control in islanding mode, volt/ 
VAR and reactive power control and grid-connected to islanding 
transition. 

Like large-scale power grids, microgrids offer ancillary 
services to maintain reliable and secure power balance, voltage, 
and frequency. They include day-ahead and real-time demand 
response [37], power reserves and congestion management [38], 
spinning reserves [39], frequency regulation [40], phase 
balancing [41], active and reactive power [42], power factor 
support [43], and black-start capacity [44], [45].   

Fig. 4. Wind Agent Control 

Fig. 6. Operator Agent Control 

Fig. 5. Load Agent Control 
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IX. CONCLUSION 

This paper presents a novel intelligent agent control for 
microgrids that are intermittent in nature. The functions of 
microgrid controls are complex because of the diversity of the 
renewable generation mix, the renewable intermittence, and the 
requirement to operate in either an islanded or grid-connected 
mode. The design of the control agents is modular and adapted 
to the requirements of the individual microgrid component: solar 
panels, wind turbines, bus inverters, storage batteries, and end-
user load. Agents operate and coordinate autonomously and self-
organize their controls to maintain generation-load balance and 
consistent voltage and frequency with the ability to sustain 
abrupt disturbances in the event of microgrid islanding and 
transitioning of renewable generation. This research is in the 
preliminary phase and further testing and validation are still 
required. 
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