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Abstract—This work presents an effective and robust 
technique to remove misclassified pixels acquired in the 
crack segmentation process of 2D X-ray CT images of tested 
plaster specimens.  Cracks have distinct properties, such as 
they are fairly piece-wise linear, and they have certain area 
and length ratios, which can be used to remove misclassified 
pixels from cracks segments.  In this paper a combination 
of polynomial regression and area-based, length-based 
filtering scheme is applied to remove undesired pixels from 
the 2D CT images of plaster specimen. With the help of 
experimental results the effectiveness and robustness of the 
proposed technique are verified.

Keywords—: computed tomography (CT), local entropy 
based thresholding, polynomial regression based filtering, 
area-based filtering, length-based filtering.   

I. INTRODUCTION 

Pores inside rocks, regardless of size, shape and location, have 
detrimental effects on the strength, stiffness and other physical 
properties of rocks [1].  In order to investigate the strength and 
stiffness of rocks, a test specimen is tested under compressive 
force in a universal testing machine. As the force increases, it 
reaches to the critical point when cracks develop inside the 
specimen. With continued loading the cracks coalesce and 
eventually the specimen fractures. Precise segmentation of 
cracks is essential for analyzing the strength, stiffness and other 
physical properties, such as permeability to gas or fluids, of 
rocks. Three dimensional (3D) computed tomography (CT) has 
recently been widely used in the field of geo-engineering to 
analyze and characterize the internal structures of rocks [2-4].
3D CT images are formed from a stack of very thin cross-
sectional slices of 2D CT images taken along the vertical 
direction of the test specimen [5]. In this research, 3D CT 
scanning is performed on a set of tested plaster specimen to 
visualize and analyze cracks. 

Cracks in multi-phase materials, such as natural rocks, have 
lower reflectance compared to the other internal structure, 
which makes it difficult to correctly identify and segment 
cracks from CT images [6]. Crack detection and segmentation 
can be categorized as a problem of edge detection in image 
processing. However, the most of widely used edge detection 
based techniques, such as different thresholding techniques [7-
8], gradient or higher derivative based methods (e.g. Canny, 
Sobel and Prewitt edge detection methods) [9], do not provide 

satisfactory results because of crack’s poor local contrast. 
Several morphological based techniques have recently been 
introduced to segment cracks in x-ray CT images [3]. However, 
choosing proper structuring elements is a difficult problem in 
morphological analysis.

In medical imaging, the problem of segmenting blood vessel 
in retinal images is similar in nature to the segmentation of 
cracks in X-ray CT images of rock cross section. Blood vessels 
in retinal images, like cracks in rock, have lower reflectance 
compared to the background [10]. Chabwimaluang et. al. [11]
developed a three-step algorithm to successfully segment blood 
vessels from retinal images. The process start with a 2D 
Gaussian matched filtering to enhance the prominence of blood 
vessels [10]. Second, a local entropy based scheme, which takes 
in to account the spatial distribution of gray-level and can 
preserve the spatial structures in binarized images, is applied to 
distinguish cracks from background. And finally a length 
filtering scheme is used to remove small segments of 
misclassified pixels. The above algorithm works well for 
enhancing the local contrast associate with cracks and thereby 
distinguishing cracks from the multi-phase crack background. 
However, the misclassified pixels acquired in this process are 
very dominant. A simple length filtering is not sufficient to 
remove unwanted pixels. Thus a combination of 
morphological-based operators, length and box filtering has 
been introduced to remove misclassified pixels from the 2D CT 
images of tested plaster specimen [12].  The above modified 
algorithm still poses difficulty in distinguishing between the 
micro-pores and the hairline cracks (i.e. the tipping point of 
cracks) for which the inherent tradeoff between the length 
filtering sensitivity and the images’ signal-to-noise ratio limits 
the success.  To circumvent this problem, some of the distinct
physical properties of cracks, such as cracks are piece-wise and
fairly linear features which can be modeled by polynomial 
regression and cracks have certain length to width ratio and 
depending upon the slope of the crack it will have certain area 
to envelope ratios, which can be modeled and incorporated in 
the algorithm. From empirical analysis, a combination of 
polynomial regression, area and length based filtering scheme
is introduced in this paper. Experimental results validates the 
effectiveness and robustness of the proposed algorithm. 

The remainder of the paper is organized as follows. Section 
II briefly describes the test specimen and the CT scanning mode 
used in this research. For the completeness of the paper, section 
III represents a short review of the 2D Gaussian matched 
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filtering and local entropy based filtering scheme. Section IV, 
elaborately discusses the proposed polynomials regression, area 
and length based filtering technique with the help of empirical 
analysis and experimental results. Section V discusses the 
challenges and future works and finally Section VI concludes 
the paper.

II. TEST SPECIMEN AND THE CT SCANNING

The test specimens used in this research are made from plaster 
of paris. To mimic the presence of macro-pores in rocks, several 
regular shaped Styrofoam inclusions, such as spheres, cubes, 
egg, and truncated cones, are placed inside the plaster of paris 
[1]. Micro-pores are naturally created because of the presence 
of tiny air bubbles. Each specimen was tested under unconfined 
compression conditions until failure. Then the test specimens 
were then CT scanned in the UF-SHANDS Health Science 
Center in Jacksonville, Florida [1]. A 64-slice, dual X-ray tube 
medical CT scanner (Seimens Medical Solutions, Forchheim, 
Germany) is used for this research.  As shown in figure 1, test 
specimens are placed on the scanner bed such that the cylinders’ 
z-axis are aligned with that of the scanner. Cross-sectional 
images of the test specimens are reconstructed at a slice 
thickness of 1mm with in plane spatial resolution of 0.4 mm × 
0.4 mm. Two such cross-sectional images are shown in figure 
2. For each test specimen 336 cross-sectional images are saved. 
When these 2D CT images are stacked on top of one another 
and a suitable interpolation technique is applied, the 3D 
volumetric image is created (Figure 3). It is clearly evident that 
the cracks that are visible in the cross-section images are almost 
invisible in the 3D volumetric images.  In this paper, the 
proposed algorithm is applied on each of the 336 cross-
sectional images of a test specimen and the 3D structure of the 
cracks are made clearly visible in the volumetric image of the
test specimen. In following sections the step by steps methods 
for segmenting cracks and removing misclassified pixel are 
explained with the help of experimental results.

Figure 1. CT scanning of plaster specimen

III. 2D MATCHED-FILTERING AND LOCAL ENTROPY-BASED 
THRESHOLDING

It is clearly evident from figure 2 that cracks have lower 
reflectance compared to their neighbor and cracks almost never 
have ideal step edges. Cracks’ small curvature and the anti-
parallel lines can well be represented by a piece-wise linear 
segment. The gray-level intensity profiles of cracks resemble 
the inverse Gaussian shaped curve. Thus to enhance the local 
contrast of cracks, a two-dimensional Gaussian matched filter 
kernel, as shown in eqn. (1), is applied on the original images.

�(�, �) = ��� �	
	
	, for |y| � L/2                (1)

where L is the segment for which the crack is assumed to have 
a fixed orientation. The direction of the crack is assumed to be 
aligned along y-axis. However, since cracks may be oriented at 
any angle, the kernel needs to be rotated for all possible angles 
[12]. Here, a set of 24 kernels of size 8×7 pixels are applied on 
the original image (I.e. the kernel is rotated by ±7.5o). The 
effectiveness of the 2D matched filtering is shown in Figure 
4(b), where the original image and the filtered image are shown 

Figure 2. CT image of specimen cross-section

Figure 3. 3D CT image of the test specimen
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side by side. It clearly evident the matched filtered CT image 
has improve the local contrast of crack significantly.

Next step is to binarize the matched-filtered images. The 
success of a segmentation process depends upon proper choice 
of a threshold value to distinguish the cracks from the 
background. Considering the spatial distribution of gray level 
in a multi-phase material, such as natural rocks, a local entropy 
based thresholding scheme [10] is applied on the matched-
filtered images. In the following, the local-entropy based 
thresholding technique is addressed very briefly [11].

Let,  � = ����×� be an m×n dimensional co-occurrence 
matrix of an image �(�, �) , which gives an idea about the 
transition of gray-level intensities (i, j) between the adjacent 
pixels. Thus, � possesses the spatial structural information of 
an image. Depending upon the ways gray-level i follows gray-
level j, different types of co-occurrence matrix are possible.  For 
this research, we used an asymmetric co-occurrence matrix 
which has horizontally right and vertically lower transitions. 
Thus, ��� is expressed as follows:

��� = � � �
�

���

�

���
                                           (2)

          

where � = 1    if ��(�, �) = �        and    �(�, � + 1) = �or�(�, �) = �      and     �(� + 1, �) = � 
           � = 0        otherwise
The probability of co-occurrence ��� of gray levels i and j

can therefore be written as,

��� = ���� � �����                                            (3)
If  !, 0 � ! � " � 1, is a threshold. Then ! can partition the 

co-occurrence matrix into four quadrants, namely A, B, C and 
D (Figure 7).

          Figure 4. Quadrants of co-occurrence matrix

Let us define the probabilities of quadrants A and C as,   

#$ = � � ���
%

��&

%

��&

#' = � � ���
*��

��%-�
                             (4)

*��

��%-�

Normalizing the probabilities within each quadrants, such 
that the sum of probabilities of each quadrant equals one, we 
get the following probabilities of each cell quadrants:

#��$ = ���#$ = ���� � ���%��&%��&                                          
Similarly,

#��' = ���#' = ���� � ���*����%-�*����%-�                            (5)
The second-order entropy of the object can be expressed 

as:

.$(!) = � 12 � � #��$ �678#��$
%

��&

%

��&
                                 (6)

Similarly, the second-order entropy of the background can be 
expressed as:

.'(!) = � 12 � � #��'  �678#��'
*��

��%-�

*��

��%-�
                          (7)

Thus, the total second-order local entropy of the object and the 
background can be expressed as:

.;(!) = .$(!) + .'(!)                                             (8)
The gray-level corresponding to the maximum of .;(!) can be 
used as an optimum threshold for crack-background 
classification. The results of application of this local-entropy 
based thresholding is shown in Figure 5 (c). It is clearly evident 
that local-entropy based thresholding scheme has also extracted 
some microporous like structures as cracks. Thus to remove the 
misclassified pixels a morphological erosion operation 
followed by an eight-connected connected neighborhood based 
length filtering is applied. The results of the above process is 
shown in figure 5 (d & e). Although it appears that our previous 
algorithm has produced a very good results, careful 
investigation of the original images reveals the fact that the 
above technique has failed to detect and segment hair-line 
cracks on the left hand side of the square macro-pore. 
Decreasing the length filter’s threshold can recover the hair-line 
cracks but it also acquired a significant amount of misclassified 
pixels, as shown in figure 5 (f). These misclassified pixels can 
be removed by choosing a larger threshold value for length 
filter, but choosing a larger threshold would again remove the 
hair-line crack segments. The following section discusses the 
steps proposed in this research to tackle this problem.

IV. A COMBINED POLYNOMIAL REGRESSION , AREA AND 
LENGTH BASED FILTERING ALGORITHM

Crack segments are fairly piece-wise linear which can be 
represented by 1st and 2nd order polynomials. Thus to 
distinguish between the crack segments and the unwanted 
pixels segments, a polynomial regression filter can be applied 

A B

D C

0 t

t

L-1

L-1
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on each connected segment. By choosing a proper value of 
coefficient of determination (i.e. r2, as shown in eqn. 9) the
unwanted pixel segments can easily be isolated from the crack 
segments.   

>8 = 1 � �(?@�?A@)	
�(?@�?B)	                                (9)

where yi is the data points of pixel segments, �A� is the prediction 
of the least square fit and �B is the arithmetic mean of the data 
points. However, choosing the proper value of r2 is a difficult 
task. From observation it is seen that for some values of r2

within a range 0.6 to 0.8, some cracks show the same property 
of the other connected regions. Moreover, the size of the 
connected region also has a strong correlation with the value of 
r2. Thus, the ratio of crack’s envelop to its area (which is termed 
as area ratio) and ratio of crack’s length to its width (which is 
termed as length ratio) are considered along with r2 to filter out 
background noises (i.e. unwanted pixel segments) first. From 
empirical observation, different values of r2, length ratio and 

area ratio are chosen for different sizes of the connected 
regions to remove background noises. 

The process starts with the connected regions of sizes in 
between 15 and 45 pixels. It is observed that for this sizes of 
the connected regions, the (length ratio > 0.6) and (area ratio > 
0.3), which resembles pretty much a rounded object, are for 
sure background noises. It is also observed that regardless of 
the values length and area ratios any connected region which 
has  r2 < 0.2 is for sure background noise. It is to be noted that 
crack segments which are perfectly aligned to either x-axis or 
y-axis (which is very unlikely) can have large area ratio. It is 
also to be noted that for the above range of the connected 
regions, smaller area ratio, length ratio and larger 
determination of coefficient (e.g. area ratio <0.3, length ratio < 
0.6, and  r2 > 0.8) do not preclude that the connected regions 
do not have any noise. The best way to isolate these noises is 
to first identify the for sure crack segments and then 
extrapolate these detected crack segments to connect them with 
their respective broken segments. Thus, after removing the for 
sure background noises, the next task is to detect for sure crack 
segments by checking if the connected regions of the above 
range have either (very small area ratio && length ratio)  or 
(very high r2). From empirical observation, it is found that for 
(area ratio < 0.2 && length ratio < 0.3) or (r2 > 0.85) are highly 
probable of being crack segments. Once these crack segments 
are detected, each of them is tested whether a 1st order 
polynomial or a 2nd order polynomial best represents the crack. 
The higher coefficient value for each crack segment is used to 
extrapolate the crack segment about three pixels at both ends 
of the crack segment. The output for this processing step is 
shown in figure 6 (a). From figures 6 (a), it is evident that the 
for sure noise segments are removed and the for sure crack 
segments are extended to their ends.

The same technique is sequentially applied to all other 
larger segments. As can be seen in figure 6 (b) (in which the 
connected regions of sizes in between 45 and 75 pixels are 
considered) and figure 6(c) (in which the connected regions of 
sizes in between 75 and 150 pixels are considered), the larger 
crack segments are connected to the smaller crack segments.

After the crack segments are detected and connected with 
their broken segments, the removal of the remaining 
background noises becomes easier. As now a suitable value of 
coefficient of determination can be chosen to remove noise 
from the image. From empirical observation, r2 < 0.7 is chosen 
as the background noise. As shown in figure 6 (d) that most of 
the smaller segments of sizes in between 5 and 20 pixels are 
removed from the background. From figure 6 (d), it is also 
observed that because of the extrapolation in the previous 
stages, the crack like segments are connected together and 
become visible on the background along with other dust like 
noise particles. The dust like noise particle can easily be 
removed by using an empty widow of size 28×30 pixels. The 
window is scanned over the image and all the dust particles that 
are fully contained inside the window and the window 
boundary does not touch the other pixels, are removed from the 
image. Figure 6 (e) shows most of the dust like particles are 
removed from the image. 

Figure 5. (a) Original cross-section, (b) Matched-filtered 
output, (c) Local-entropy based thresholding, (d) Erosion 
applied on thresholded image, (e) Output image after length 
filtering, (f) Output image for smaller threshold in length filter  

(a) (b)

(c) (d)

(e) (f)
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Now to remove the remaining crack like connected 
segments, all the connected region of sizes in between 5 and 60 
pixels are tested if their coefficient of determinations are less 
than 0.65. Any segment with r2 < 0.65 (which is chosen from 
empirical analysis) is a good candidate for removal from the 
image as noise. For segments with r2 > 0.65, the neighborhood 
of both ends are checked to see if they are close to any of the 
for sure crack segment detected in the previous stages. In case 
a neighboring crack is detected, the slope of the tested segment 
is compared with neighboring crack. If the slopes are within 
certain range (from empirical observation, it is observed that, 
slopes within 80% of one another), the tested segment is 
considered as good candidate for crack, otherwise it is removed 
from the image. From figure 6 (f), it is clearly evident that crack 
like noise segments are removed from the image. After 
removing these crack like segments,  it left behind some 
residual dust particles, which is also be removed using the 
empty window as discussed before.  

The above crack detection and noise removal technique is 
applied to all the 336 cross-section CT images of the test 
specimens. All the processed images are stacked on top of one 
another and an application software, Voxler 3, is used to create 
the 3D image of the test specimen. As shown in figure 7, the 
cracks along with the inclusions are easily visible in the 
volumetric images taken at different angle of the test specimen. 
Now to get a clear view of the cracks, the outer boundary is 
removed from the 2D images (figure 8) and the resultant 3D 
images are shown in figure 9. 

Figure 7. Three-dimensional images of the test specimen 
showing the cracks along with inclusion in the test 
specimen.  

Figure 6. Binarized cross-sectional CT images showing the 
expected outcomes at different stages of a combined 
polynomial regression, area and length based filtering 
algorithm    

(a)

(b)

(a) (b)

(c) (d)

(e) (f)
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V. CHALLENGES AND FUTURE WORKS

From boundary-less 3D images (as shown in figure 9 (b & c), it 
is clearly evident that the cracks planes are accompanied by 
some protrusion which would make it difficult to quantitatively 
analyze cracks properties (e.g. measuring crack volume, which 
is a very important parameter used in charactering the physical 
properties of rocks). After carefully investigating all the 336 
segmented 2D cross-sectional images, it is discovered that each 
crack segments is accompanied by some sort of protrusions on 
it. To minimize the protrusion effect, a smoothing filter (for our 
case a simple average filter) is applied on the 2D images and a 
3D image is created from the smooth 2D images, as shown in 
figure 9(d). Although the smoothed 3D image gives better 
visualization of the cracks, it is not free from protrusion effect. 
Removing protrusion from 2D images would certainly enhance 

the quality of the 3D images of cracks. In our future endeavor 
efforts will be made to solve this problem.

VI. CONCLUSION

In this paper an effective and robust technique is designed and 
implemented to remove undesired pixel segments acquired 
during the crack segmentation process of 2D X-ray CT images. 
The proposed technique incorporated some distinct physical 
properties of cracks in the algorithm to isolate unwanted pixel 
segments from cracks. The algorithm consists of a combination 
of a polynomial regression based filter (which represents crack 
segment as piece-wise fairly linear segment), area-based filter 
(which represents crack’s probable area ratio) and length-based 
filter (which represents crack’s probable length ratio). 
Experimental results demonstrate the validity of proposed 
technique. Although the algorithm works very well in 
removing unwanted isolated pixel segments from the 2D X-ray 
CT images, it produces some protrusion effects on the cracks. 
In our future works, emphasis will be given to remove the 
protrusion effects and develop a mathematical model to 
analyze the physical properties of 3D crack segments.  
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Figure 8. Boundary-less cross-sectional x-ray CT images of 
the test specimens used for boundary less 3D images

Figure 9. (a) 3D image of the test specimen showing the crack 
and inclusions. (b)-(c) Boundary-less 3D images and (d) 
smooth boundary-less 3D image of the test specimen. 

(a) (b)

(c) (d)
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